精英家教网 > 高中数学 > 题目详情
抛物线轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,该正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是             

试题分析:根据旋转体的对称性,不妨设正方体的一个对角面恰好在平面内,组合体被此面所截得的截面图如下:

设正方体的棱长为,则 ,
因为,所以, ,即:
解得:,因为,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).
(1)化曲线的极坐标方程为直角坐标方程;
(2)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线的顶点在原点,准线方程为x=-.
(1)求抛物线的标准方程;
(2)若点P是抛物线上的动点,点P在y轴上的射影是Q,点M,试判断|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,请说明理由;
(3)过抛物线焦点F作互相垂直的两直线分别交抛物线于A,C,B,D,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为(    )
A.(0,1)B.(1,0)C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出。现已知抛物线的焦点为F,过抛物线上点的切线为,过P点作平行于x轴的直线m,过焦点F作平行于的直线交m于M,则的长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线,过其焦点且斜率为-1的直线交抛物线于两点,若线段的中点的横坐标为3,则该抛物线的准线方程为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标是            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的顶点在原点,焦点在y轴上,抛物线上的点到焦点的距离为4,则的值为(   )
A.4B.-2C.4或-4D.12或-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为抛物线的焦点,为抛物线上三点,若的重心,则的值为(     )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案