精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a,b,c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B;
(Ⅱ)若 ,求△ABC的面积.

【答案】解:(I)由已知得 ,由正弦定理得 .即2sinAcosB+sinCcosB=﹣sinBcosC,
即2sinAcosB+sin(B+C)=0.
∵B+C=π﹣A,∴sin(B+C)=sin(π﹣A)=sinA,
,∴
(II)由(I)得
代入b2=a2+c2﹣2accosB中,得ac=3.

【解析】(Ⅰ)把已知的等式变形,利用正弦定理化简,再根据两角和与差的正弦函数公式及诱导公式进行变形,根据sinA不为0,在等式两边同时除以sinA,得到cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)由第一问求出的B的度数,得到sinB的值,同时利用余弦定理得到b2=a2+c2﹣2accosB,配方化简后,把cosB,b,及a+c的值代入,求出ac的值,最后由ac及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.
【考点精析】利用正弦定理的定义和余弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=6cos2 + sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ ),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解初三女生身高情况,某中学对初三女生身高情况进行了一次测量,所得数据整理后列出了频率分布表如下:

组别

频数

频率

145.5~149.5

1

0.02

149.5~153.5

4

0.08

153.5~157.5

20

0.40

157.5~161.5

15

0.30

161.5~165.5

8

0.16

165.5~169.5

m

n

合计

M

N


(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图;
(3)全体女生中身高在哪组范围内的人数最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线(
A.有无数条
B.有2条
C.有1条
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.

(1)若E,F分别是PC,AD的中点,证明:EF∥平面PAB;
(2)若E是PC的中点,F是AD上的动点,问AF为何值时,EF⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x . (Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:一个圆锥的底面半径为2,高为6,在其中有一个半径为x的内接圆柱.
(1)试用x表示圆柱的体积;
(2)当x为何值时,圆柱的侧面积最大,最大值是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(2x﹣1),g(x)=ax﹣a(a∈R).
(1)若y=g(x)为曲线y=f(x)的一条切线,求a的值;
(2)已知a<1,若存在唯一的整数x0 , 使得f(x0)<g(x0),求a的取值范围.

查看答案和解析>>

同步练习册答案