精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+1|+|x﹣2|,不等式f(x)≥t对x∈R恒成立.
(1)求t的取值范围;
(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:

【答案】
(1)解:f(x)=|x+1|+|2﹣x|≥|x+1+2﹣x|=3,所以t≤3
(2)证明:由(1)知T=3,所以a2+b2=3(a>0,b>0)

因为a2+b2≥2ab,所以 ,又因为

所以 (当且仅当a=b时取“=”):


【解析】(1)利用绝对值三角不等式求出f(x)的最小值,即可求t的取值范围;(2)求出t的最大值为T,化简a2+b2=T,利用基本不等式证明:
【考点精析】掌握不等式的证明是解答本题的根本,需要知道不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50


(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX. 附表及公式

P(k2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以A,B,C,D,E,F为顶点的多面体中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.
(Ⅰ)请在图中作出平面α,使得DEα,且BF∥α,并说明理由;
(Ⅱ)求直线EF与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数).

(1)判断函数的奇偶性;

(2)若不等式时有解,求实数的取值范围;

(3)设,是否存在正数,使得对于区间上的任意三个实数,都存在以为边长的三角形?若存在,试求出这样的的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,BC⊥CD,点P在底面ABCD上的射影为A,BC=CD= AD=1,E为棱AD的中点,M为棱PA的中点.
(1)求证:BM∥平面PCD;
(2)若∠ADP=45°,求二面角A﹣PC﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 图象上所有点的横坐标缩短为原来的 ,纵坐标不变,再向右平移 个单位长度,得到函数y=g(x)的图象,则下列说法正确的是(
A.函数g(x)的一条对称轴是
B.函数g(x)的一个对称中心是
C.函数g(x)的一条对称轴是
D.函数g(x)的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,a,b,c成等比数列,且a2﹣c2=ac﹣bc.
(Ⅰ)求∠A的大小;
(Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①存在实数α使
②直线 是函数y=sinx图象的一条对称轴.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,则tanα>tanβ.
其中正确命题的题号为( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼成一个大的正方形,若图中直角三角形两锐角分别为α、β,且小正方形与大正方形面积之比为4:9,则cos(α﹣β)的值为(
A.
B.
C.
D.0

查看答案和解析>>

同步练习册答案