精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)= sin2x+2cos2x+m在区间[0, ]上的最大值为6,求常数m的值及此函数当x∈R时的最小值,并求相应的x的取值集合.

【答案】解:f(x)= sin2x+2cos2x+m
= sin2x+1+cos2x+m
=2sin(2x+ )+m+1,
∵x ,∴2x+ ∈[ ],
sin(2x+ )≤1,
所以函数f(x)的最大值为3+m,
∴3+m=6,m=3,
∴f(x)=2sin(2x+ )+4,
当x∈R时,函数f(x)的最小值为2,
此时2x+ =﹣
即x=﹣ +kπ(k∈Z)时取最小值.
【解析】先利用两角和的正弦公式化成标准形式,根据x的范围求函数的最大值,然后让最大值等于6,求出m的值;当x∈R时,根据正弦函数求函数的最小值及取到最小值时的x的值.
【考点精析】解答此题的关键在于理解二倍角的余弦公式的相关知识,掌握二倍角的余弦公式:,以及对三角函数的最值的理解,了解函数,当时,取得最小值为;当时,取得最大值为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 的图象在点处的切线与直线平行.

(1)求的值;

(2)若函数),且在区间上是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分8分) 已知抛物线Cy=-x2+4x-3

1)求抛物线C在点A0,-3)和点B30)处的切线的交点坐标;

2)求抛物线C与它在点A和点B处的切线所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, 点在底面内的射影在线段上,且 的中点, 在线段上,且

(Ⅰ)当时,证明:平面平面

(Ⅱ)当平面与平面所成的二面角的正弦值为时,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为 .

(1)求直线与圆相切的概率;

(2)将 ,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】样本a1 , a2 , a3 , …,a10的平均数为 ,样本b1 , b2 , b3 , …,b10的平均数为 ,那么样本a1 , b1 , a2 , b2 , …,a10 , b10的平均数为( )
A.+
B. +
C.2( +
D. +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①函数 是奇函数;
②存在实数x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,则tanα<tanβ;
是函数 的一条对称轴;
⑤函数 的图象关于点 成中心对称.
其中正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】咖啡馆配制两种饮料,甲种饮料分别用奶粉、咖啡、糖。乙种饮料分别用奶粉、咖啡、糖。已知每天使用原料限额为奶粉、咖啡、糖。如果甲种饮料每杯能获利元,乙种饮料每杯能获利元。每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某货轮匀速行驶在相距海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为),其他费用为每小时元,且该货轮的最大航行速度为海里/小时.

(1)请将从甲地到乙地的运输成本(元)表示为航行速度(海里/小时)的函数;

(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

同步练习册答案