【题目】已知圆与直线相切,圆心在轴上,且直线被圆截得的弦长为.
(1)求圆的方程;
(2)过点作斜率为的直线与圆交于两点,若直线与的斜率乘积为,且,求的值.
【答案】(1);(2).
【解析】
试题(1)设圆的方程为,则圆心到直线的距离为,由直线被圆截得的弦长为,及弦长公式,得关于的一个方程;再由圆与直线相切可得又一关于的一个方程;联立方程,即可求出的值,而得到圆的方程;
(2)设直线的方程为,联立直线与圆的方程,消去得到一个关于的一元二次方程,设,由韦达定理,可用将直线与的斜率乘积为表示出来,然后由可求出的值,进而就可求出的值.
试题解析:(1)设圆的方程为,
则圆心到直线的距离为,
由直线被圆截得的弦长为可得
,即,①
由圆与直线相切可得,即②,
由①②及解得,
故圆的方程为,
(2)设直线的方程为,联立,
得,
则恒成立.
设,则,
则,
所以,
则,
故
则,
,
故
科目:高中数学 来源: 题型:
【题目】下列结论:
“直线l与平面平行”是“直线l在平面外”的充分不必要条件;
若p:,,则:,;
命题“设a,,若,则或”为真命题;
“”是“函数在上单调递增”的充要条件.
其中所有正确结论的序号为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率,左焦点为,右顶点为,过点的直线交椭圆于两点,若直线垂直于轴时,有.
(1)求椭圆的方程;
(2)设直线: 上两点, 关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以椭圆:的中心为圆心,为半径的圆称为该椭圆的“准圆”,设椭圆的左顶点为,左焦点为,上顶点为,且满足,.
(1)求椭圆及其“准圆"的方程;
(2)若过点的直线与椭圆交于、两点,当时,试求直线交“准圆”所得的弦长;
(3)射线与椭圆的“准圆”交于点,若过点的直线,与椭圆都只有一个公共点,且与椭圆的“准圆”分别交于,两点,试问弦是否为”准圆”的直径?若是,请给出证明:若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示将同心圆环均匀分成n()格.在内环中固定数字1~n.问能否将数字1~n填入外环格内,使得外环旋转任意格后有且仅有一个格中内外环的数字相同?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.
(1)求椭圆的方程;
(2)过椭圆的右焦点作直线交椭圆于、两点,交轴于点,若,,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右两个顶点分别为,点为椭圆上异于的一个动点,设直线的斜率分别为,若动点与的连线斜率分别为,且,记动点的轨迹为曲线.
(1)当时,求曲线的方程;
(2)已知点,直线与分别与曲线交于两点,设的面积为,的面积为,若,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com