精英家教网 > 高中数学 > 题目详情
如图,椭圆+=1(a>b>0)上的点到左焦点为F的最大距离是,已知点M(1,e)在椭圆上,其中e为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点且斜率为K的直线交椭圆于P、Q两点,其中P在第一象限,它在x轴上的射影为点N,直线QN交椭圆于另一点H.证明:对任意的K>0,点P恒在以线段QH为直径的圆内.

【答案】分析:(Ⅰ)根据椭圆上的点到左焦点为F的最大距离是,M(1,e)在椭圆上,建立方程组,即可求椭圆的方程;
(Ⅱ)设出直线QN的方程,代入椭圆方程,利用韦达定理,结合向量的数量积,即可得到结论.
解答:(Ⅰ)解:由题意,,解得a2=4,b2=1
∴椭圆的方程为
(Ⅱ)证明:令P(x1,kx1),H(xH,yH),则Q(-x1,-kx1),N(x1,0)
∴kPN=,∴直线QN的方程为y=(x-x1),
代入,整理得(1+k2)x2-2k2x1x+=0
∴(-x1)+xH=,∴xH=+x1
=(-2x1,-2kx1),=(
=
∵k>0,x1>0,∴<0
∴对任意的k>0,点P恒在以线段QH为直径的圆内.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年辽宁省铁岭市开原市高二(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,椭圆=1(a>b>0)与过A(2,0),B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
(1)求椭圆方程;
(2)设F1、F2分别为椭圆的左、右焦点,M为线段AF2的中点,求tan∠ATM.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年陕西省延安市实验中学高二(下)期中数学试卷(理科)(解析版) 题型:解答题

如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源:2011年四川省南充市高考数学零诊试卷(文科)(解析版) 题型:解答题

如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源:2006年浙江省高考数学试卷(理科)(解析版) 题型:解答题

如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源:2011年天津市滨海新区高考数学模拟试卷(文科)(解析版) 题型:解答题

如图,椭圆=1(a>b>0)与一等轴双曲线相交,M是其中一个交点,并且双曲线的顶点是该椭圆的焦点F1,F2,双曲线的焦点是椭圆的顶点A1,A2,△MF1F2的周长为4(+1).设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案