精英家教网 > 高中数学 > 题目详情

已知定义在上的函数是偶函数,且时,
(1)当时,求解析式;
(2)当,求取值的集合;
(3)当,函数的值域为,求满足的条件

(1)(2)当取值的集合为
取值的集合为;(3) 

解析试题分析:(1)设, 利用偶函数,得到函数解析式;(2)三种情况进行讨论,结合(1)的解析式,判定函数在定义域内的单调性,函数是偶函数,关于y轴对称的性质,判定端点值的大小,从而求出取值集合;(3)由值域确定,,,所以分进行求解
试题解析:解:(1)函数是偶函数,

时,

            (4)
(2)当为减函数
取值的集合为
在区间为减函数,在区间为增函数

取值的集合为
在区间为减函数,在区间为增函数

取值的集合为
综上:当取值的集合为
取值的集合为
取值的集合为                (6)
(3)当,函数的值域为,
的单调性和对称性知,的最小值为

时,
时,                (4)
考点:1 求分段函数的解析式;2 已知函数的定义域求值域;3 已知值域求定义域

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

判断下列对应是否是从集合A到集合B的函数.
(1) A=B=N*,对应法则f:x→y=|x-3|,x∈A,y∈B;
(2) A=[0,+∞),B=R,对应法则f:x→y,这里y2=x,x∈A,y∈B;
(3) A=[1,8],B=[1,3],对应法则f:x→y,这里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,对应法则:对任意(x,y)∈A,(x,y)→z=x+3y,z∈B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx(a、b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.
(1)求证:f(x)在R上是减函数.
(2)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中是常数.
(1)若是奇函数,求的值;
(2)求证:的图像上不存在两点A、B,使得直线AB平行于轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(2x)
(I)用定义证明函数上为减函数。
(II)求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像关于原点对称,且
(1)求函数的解析式;
(2)解不等式
(3)若函数在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数y=f(x)的定义域是[0,2],求函数g(x)=的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}.
(1)求I的长度(注:区间(α,β)的长度定义为β-α);
(2)给定常数k∈(0,1),当1-k≤a≤1+k时,求I的长度的最小值.

查看答案和解析>>

同步练习册答案