精英家教网 > 高中数学 > 题目详情

数列1·203·215·227·23…(2n1)2n1,的前n项和Sn=__________

 

答案:
解析:

(2n3)2n+3

 


提示:

2×Sn=1·21+3·22+5·23+7·24…+(2n1)2n

Sn=1·20+3·21+5·22+7·23…+(2n1)2n1

两式相减,得Sn=(2n1)2n+2122n=(2n3)2n+3

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、甲,乙两位同学为解决数列求和问题,试图编写一程序.两人各自编写的程序框图分别如图1和如图2.
(1)根据图1和图2,试判断甲,乙两位同学编写的程序框图输出的结果是否一致?当n=20时分别求它们输出的结果;
(2)若希望通过对图2虚框中某一步(或几步)的修改来实现“求首项为2,公比为3的等比数列的前n项和”,请你给出修改后虚框部分的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

有n个首项都是1的等差数列,设第m个数列的第k项为amk(m,k=1,2,3,…,n,n≥3),公差为dm,并且a1n,a2n,a3n,…,ann成等差数列.
(Ⅰ)证明dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),并求p1+p2的值;
(Ⅱ)当d1=1,d2=3时,将数列dm分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为(cm4(cm>0),求数列{2cmdm}的前n项和Sn
(Ⅲ)设N是不超过20的正整数,当n>N时,对于(Ⅱ)中的Sn,求使得不等式
150
(Sn-6)>dn
成立的所有N的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀   合   计
物理成绩优秀
物理成绩不优秀
合   计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

德国数学家洛萨•科拉茨1937年提出了一个猜想:任给一个正整数n,如果它是偶数,就将它减半;如果它是奇数,则将它乘3再加1,不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,得到一个数列:6,3,10,5,16,8,4,2,1.现在请你研究:如果对正整数n(首项),按照上述规则实施变换(1可以多次出现)后的第八项为1,则n的所有可能的对值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)一个数列{1,2,2,3,3,3,4,4,4,4,5,…},它的首项是1,随后两项都是2,接下来3项都是3,再接下来4项都是4,…,依此类推,若an-1=20,an=21,则n=
211
211

查看答案和解析>>

同步练习册答案