精英家教网 > 高中数学 > 题目详情
7.若sinαsinβ=1,则cos(α+β)=(  )
A.1B.-1C.0D.0或-1

分析 由sinαsinβ=1,得cosαcosβ=0,利用两角和的余弦函数公式可得答案.

解答 解:由sinαsinβ=1,得cosαcosβ=0,
∴cos(α+β)=cosαcosβ-sinαsinβ=-1.
故选:B.

点评 本题考查两角和与差的余弦公式,考查学生的运算能力,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,若在三棱柱ABC-A′B′C′中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{AA′}$=$\overrightarrow{c}$,M是A′B的中点,点N在CM上,且CN:NM=1:2,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{CM}$、$\overrightarrow{C′N}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(  )
A.内切B.外切C.相交D.外离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线C1的极坐标方程为ρ(cosθ+2sinθ)+2=0,曲线C2的图象与x轴、y轴分别交于A、B两点.
(1)判断A、B两点与曲线C1的位置关系;
(2)点M是曲线C1上异于A、B两点的动点,求△MAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆M的圆心在直线y=-x上,且经过点A(-3,0),B(1,2).
(1)求圆M的方程;
(2)直线l与圆M相切,且l在y轴上的截距是在x轴上截距的两倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-$\frac{ax+1}{x-1}$,a∈R,且f'(2)=$\frac{5}{2}$.
(1)求函数f(x)的单调区间;
(2)证明:与曲线y=lnx(x>1)和y=ex都相切的直线有且只有一条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.三棱锥P-ABC的四个顶点都在体积为$\frac{500π}{3}$的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为抛物线C2:y2=2px的焦点F,且点F到双曲线的一条渐近线的距离为$\sqrt{3}$,若双曲线C1与抛物线C2在第一象限内的交点为P(x0,2$\sqrt{6}$),则该双曲线的离心率e为(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a,b,c分别是A,B,C的对边,且满足bsinA+bcosA=c.
(1)求B;
(2)若角A的平分线与BC相交于D点,AD=AC,BD=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案