【题目】在平面直角坐标系中,已知椭圆的离心率为,且椭圆短轴的一个顶点到一个焦点的距离等于.
(1)求椭圆的方程;
(2)设经过点的直线交椭圆于,两点,点.
①若对任意直线总存在点,使得,求实数的取值范围;
②设点为椭圆的左焦点,若点为的外心,求实数的值.
科目:高中数学 来源: 题型:
【题目】已知半圆:,、分别为半圆与轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某鲜花小镇圈定一块半径为1百米的圆形荒地,准备建成各种不同鲜花景观带.为了便于游客观赏,准备修建三条道路AB,BC,CA,其中A,B,C分别为圆上的三个进出口,且A,B分别在圆心O的正东方向与正北方向上,C在圆心O南偏西某一方向上.在道路AC与BC之间修建一条直线型水渠MN种植水生观赏植物黄鸢尾(其中点M,N分别在BC和CA上,且M在圆心O的正西方向上,N在圆心O的正南方向上),并在区域MNC内种植柳叶马鞭草.
(1)求水渠MN长度的最小值;
(2)求种植柳叶马鞭草区域MNC面积的最大值(水渠宽度忽略不计).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,底面是边长为4的正三角形,,底面,点分别为,的中点.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】火把节是彝族、白族、纳西族、基诺族、拉祜族等民族的古老传统节日,有着深厚的民俗文化内涵,被称为“东方的狂欢节”凉山州旅游局为了解民众对火把节知识的知晓情况,对西昌市区 A,B 两小区的部分居民开展了问卷调查,他们得分(满分100分)数据,统计结果如下:
A小区 | ||||
得分范围/分 | ||||
频率 |
B小区
(1)以每组数据的中点值作为该组数据的代表,求B小区的平均分;
(2)若A小区得分在内的人数为人,B小区得分在内的人数为人,求在 A,B 两小区中所有参加问卷调查的居民中得分不低于分的频率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线l的方程为y=(-a-1)x +a-2.
(1)求直线过定点A的坐标;
(2)若l在两坐标轴上的截距相等,求l的方程;
(3)若l不经过第二象限,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对,两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命 材料类型 | 个月 | 个月 | 个月 | 个月 | 总计 |
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:,.参考公式:回归直线方程为,其中 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)+(ω≥0,|φ|<π)的图象与直线y=c(<c<)的三个相邻交点的横坐标为2,6,18,若a=f(lg),b=f(lg2),则以下关系式正确的是( )
A. a+b=0B. a﹣b=0C. a+b=1D. a﹣b=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果有穷数列、、、、(为正整数)满足条件、、,即,我们称其为“对称数列”.例如,数列、、、、与数列、、、、、都是“对称数列”.
(1)设是项的“对称数列”,其中、、、是等差数列,且,,依次写出的每一项;
(2)设是项的“对称数列”,其中、、、是首项为,公比为的等比数列,求各项的和;
(3)设是项的“对称数列”,其中、、、是首项为,公差为的等差数列,求前项的和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com