精英家教网 > 高中数学 > 题目详情

【题目】在无穷数列中, ,对于任意,都有 ,设,记使得成立的的最大值为

)设数列 ,写出 的值.

)若为等比例数列,且,求的值.

)若为等差数列,求出所有可能的数列

【答案】(1) ;(2);(3.

【解析】试题分析:(1)根据题意,使得成立的的最大值为,即可写出 的值;(2)确定

,分组求和,即可的值;(3)若为等差数列,先判断,再证明,可得,从而可得结果

试题解析:

为等比数列,

∵使得成立的的最大值为

)由题意得

结合条件,得

又∵使得成立的的最大值为,使得成立的的最大值为

,则

假设,即,则当时, ,当时,

为等差数列,

∴公差

,其中,这与矛盾,

又∵

∵使得,由,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整;函数的解析式为= (直接写出结果即可);

(2)求函数的单调递增区间;

(3)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1(a>1),过直线l:x=2上一点P作椭圆的切线,切点为A,当P点在x轴上时,切线PA的斜率为± . (Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,求△POA面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且是等比数列.

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:

(1)ACBD=ADAB;
(2)AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC

(1)求证:A,B,C,P四点共圆;
(2)若∠CAD= ,AB=1,求四边形ABCP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2axbg(x)=ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求abcd的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fn(x)= (n∈N*),关于此函数的说法正确的序号是
①fn(x)(n∈N*)为周期函数;②fn(x)(n∈N*)有对称轴;③( ,0)为fn(x)(n∈N*)的对称中心:④|fn(x)|≤n(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形 ,以 的中点 为原点,建立如图所示的平面直角坐标系 .

(1)求以 为焦点,且过 两点的椭圆的标准方程;
(2)在(1)的条件下,过点 作直线 与椭圆交于不同的两点 ,设 ,点 坐标为 ,若 ,求 的取值范围.

查看答案和解析>>

同步练习册答案