精英家教网 > 高中数学 > 题目详情

已知函数f(x)=(2cos2x-1)sin2x+cos4x.
(1)求f(x)的最小正周期及最大值;
(2)若α∈(,π),且f(α)=,求α的值.

(1) f(x)的最小正周期为,最大值为   (2)

解析解:(1)因为f(x)=(2cos2x-1)sin2x+cos4x
=cos2xsin2x+cos4x
=(sin4x+cos4x)
=sin(4x+),
所以f(x)的最小正周期为,最大值为.
(2)因为f(α)=,所以sin(4α+)=1.
因为α∈(,π),
所以4α+∈(,).
所以4α+=.故α=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,函数.
⑴设,x为某三角形的内角,求时x的值;
⑵设,当函数取最大值时,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小正周期和单调递增区间;
(2)已知三边长,且,的面积.求角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数.
(1)求函数的最小正周期;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)对于函数,有下列结论:①是奇函数;②是周期函数,最小正周期为;③的图象关于点对称;④的图象关于直线对称.其中正确结论的序号是__________;(直接写出所有正确结论的序号)
(2)对于函数,求满足的取值范围;
(3)设函数的值域为,函数的值域为,试判断集合之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为,值域为[-5,1],求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a=(2cosx,cos2x),b=(sinx,-),f(x)=a·b.
(1)求f(x)的振幅、周期,并画出它在一个周期内的图象;
(2)说明它可以由函数y=sinx的图象经过怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin2cos 2x-1(x∈R).
(1)若函数h(x)=f(xt)的图象关于点对称,且t∈(0,π),求t的值;
(2)设pxq:|f(x)-m|<3,若pq的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=Asin,x∈R,A>0,0<φ<,y=f(x)的部分图象如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).

(1)求f(x)的最小正周期及φ的值;
(2)若点R的坐标为(1,0),∠PRQ=,求A的值.

查看答案和解析>>

同步练习册答案