【题目】已知椭圆C: (a>b>0)的一个焦点与抛物线 的焦点相同,F1 , F2为椭圆的左、右焦点.M为椭圆上任意一点,△MF1F2面积的最大值为4 .
(1)求椭圆C的方程;
(2)设椭圆C上的任意一点N(x0 , y0),从原点O向圆N:(x﹣x0)2+(y﹣y0)2=3作两条切线,分别交椭圆于A,B两点.试探究|OA|2+|OB|2是否为定值,若是,求出其值;若不是,请说明理由.
【答案】
(1)
解:抛物线 的焦点为(2 ,0),
由题意可得c=2 ,
△MF1F2面积的最大值为4 ,可得当M位于椭圆短轴端点处取得最大值.
即有 b2c=4 ,解得b=2,a2=b2+c2=4+8=12,
则椭圆方程为
(2)
证明:设直线OA:y=k1x,OB:y=k2x,A(x1,y1),B(x2,y2),
设过原点圆(x﹣x0)2+(y﹣y0)2=3的切线方程为y=kx,
则有 = ,整理得(x02﹣3)k2﹣2x0y0k+y02﹣3=0,
即有k1+k2= ,k1k2= ,
又因为 ,所以可求得k1k2= =﹣ ,
将y=k1x代入椭圆方程x2+3y2=12,
得x12= ,则y12= ,
同理可得x22= ,y22= ,
所以|OA|2+|OB|2= +
=
= =16.
所以|OA|2+|OB|2的值为定值16
【解析】(1)求得抛物线的焦点,可得c,再由当M位于椭圆短轴端点处△MF1F2面积取得最大值.可得b,由a,b,c的关系求得a,进而得到椭圆方程;(2)设直线OA:y=k1x,OB:y=k2x,A(x1 , y1),B(x2 , y2),设过原点圆(x﹣x0)2+(y﹣y0)2=3的切线方程为y=kx,运用直线和圆相切的条件:d=r,联立直线OA、OB方程和椭圆方程,求得A,B的坐标,运用韦达定理,化简整理,即可得到定值.
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
A1 | 上一个年度未发生有责任道路交通事故 | 下浮10% |
A2 | 上两个年度未发生有责任道路交通事故 | 下浮20% |
A3 | 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
A4 | 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
A5 | 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
A6 | 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | A1 | A2 | A3 | A4 | A5 | A6 |
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定a=950.记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xe2x﹣lnx﹣ax.
(1)当a=0时,求函数f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左右焦点分别为、,上顶点为B,O为坐标原点,且向量与的夹角为.
求椭圆的方程;
设,点P是椭圆上的动点,求的最大值和最小值;
设不经过点B的直线l与椭圆相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据:
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为的雾霾天数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于, 两点, 是中点.
(Ⅰ)当与垂直时,求证: 过圆心.
(Ⅱ)当,求直线的方程.
(Ⅲ)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:和点,P是圆上一点,线段BP的垂直平分线交CP于M点,则M点的轨迹方程为______;若直线l与M点的轨迹相交,且相交弦的中点为,则直线l的方程是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣(a+2)x+alnx,其中常数a>0.
(Ⅰ)当a>2时,求函数f(x)的单调递增区间;
(Ⅱ)设定义在D上的函数y=h(x)在点P(x0 , h(x0))处的切线方程为l:y=g(x),若 >0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com