精英家教网 > 高中数学 > 题目详情

【题目】2019年月湖北潜江将举办第六届“中国湖北(潜江)龙虾节”,为了解不同年龄的人对“中国湖北(潜江)龙虾节”关注程度,某机构随机抽取了年龄在岁之间的人进行调查,经统计“年轻人”与“中老年人”的人数之比为

关注

不关注

合计

年轻人

中老年人

合计

(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“中国湖北(潜江)龙虾节”是否和年龄段有关?

(2)现已用分层抽样的办法从中老年人中选取了人进行问卷调查.若再从这人中选取人进行面对面询问,求事件“选取的人中恰有人关注“中国湖北(潜江)龙虾节””的概率.

附:参考公式,其中

临界值表:

【答案】(1)有;(2).

【解析】

1)根据已知条件完成列联表,求出,即可判断是否有的把握认为关注“中国湖北(潜江)龙虾节”是否和年龄段有关;

2)现已用分层抽样的办法从中老年人中选取了人进行问卷调查,得知抽取的6位中老年人中有4人关注,2人不关注,从中选三人,写出对应的基本事件,数出满足条件的,利用概率公式求得结果.

(1)

关注

不关注

合计

年轻人

10

30

40

中老年人

40

20

60

合计

50

50

100

其中带入公式的,故有的把握认为关注“中国湖北(潜江)龙虾节”和年龄段有关;

(2)抽取的6位中老年人中有4人关注,2人不关注,设事件“选取的3人中恰有2人关注“中国湖北(潜江)龙虾节””为事件,记关注的四人为记不关注的两人为从这人中选人的选法有

,

共20种,其中种情况满足题意故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2annN*).

1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;

(2)若bn=2n+1an+2n+1,数列{bn}的前n项和为Tn.求满足不等式2010n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(

A.函数在区间上有且只有个零点

B.若函数,则

C.如果函数上单调递增,那么它在上单调递减

D.若函数的图象关于点对称,则函数为奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直四棱柱的底面是直角梯形,分别是棱上的动点,且.

1)证明:无论点怎样运动,四边形都为矩形;

2)当时,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2) 若函数有两个零点 ,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

求定义域;

若函数的反函数是其本身,求a的值;

求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,分别为的中点,,如图.

1)若交平面,证明:三点共线;

2)线段上是否存在点,使得平面平面,若存在确定的位置,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的单调区间;

(2)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在人群流量较大的街道,有一中年人吆喝送钱,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.

1)摸出的3个球为白球的概率是多少?

2)摸出的3个球为2个黄球1个白球的概率是多少?

3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

同步练习册答案