精英家教网 > 高中数学 > 题目详情

【题目】下列函数f(x)与g(x)相等的一组是(  )
A.f(x)=x﹣1,g(x)=﹣1
B.f(x)=x2 , g(x)=(4
C.f(x)=log2x2 , g(x)=2log2x
D.f(x)=tanx,g(x)=

【答案】D
【解析】解:对于A,f(x)=x﹣1(x∈R),与g(x)=﹣1=x﹣1(x≠0)的定义域不同,∴不是相等函数;
对于B,f(x)=x2(x∈R),与g(x)=(4=x2(x≥0)的定义域不同,∴不是相等函数;
对于C,f(x)=log2x2=2log2|x|(x≠0),与g(x)=2log2x(x>0)的定义域不同,对应关系也不同,∴不是相等函数;
对于D,f(x)=tanx(x≠+kπ,k∈Z),与g(x)==tanx(x≠+kπ,k∈Z)的定义域相同,对应关系也相同,∴是相等函数.
故选:D.
【考点精析】根据题目的已知条件,利用判断两个函数是否为同一函数的相关知识可以得到问题的答案,需要掌握只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(0,1)上是增函数的是(  )
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|1﹣|
(1)求满足f(x)=2的x值;
(2)是否存在实数a,b,且0<a<b<1,使得函数y=f(x)在区间[a,b]上的值域为[a,2b],若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:

(Ⅰ)求频率分布表中的值,并补全频率分布直方图;

(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在内的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直线PQ与⊙O切于点AAB是⊙O的弦,∠PAB的平分线AC交⊙O于点C,连接CB,并延长与直线PQ相交于Q点.

(1)求证:QC·ACQC2QA2

(2)若AQ=6,AC=5,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为圆柱的轴,CD为底面直径,E为底面圆周上一点,AB=1,CD=2,CE=DE.
求(1)三棱锥A﹣CDE的全面积;
(2)点D到平面ACE的距离.

查看答案和解析>>

同步练习册答案