精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{1}{3}$x3-4x+4.
(1)求f(x)在x=1处的切线方程;
(2)求f(x)在[-3,6]上的最大值与最小值.

分析 (1)求出f(x)的导数,求得切线的斜率和切点,再由点斜式方程可得切线的方程;
(2)求出导数,求得极值点,计算极值和端点处的函数值,即可得到所求的最值.

解答 解:(1)函数f(x)=$\frac{1}{3}$x3-4x+4的导数为f′(x)=x2-4,
f(x)在x=1处的切线的斜率为k=1-4=-3,切点为(1,$\frac{1}{3}$),
即有f(x)在x=1处的切线方程为y-$\frac{1}{3}$=-3(x-1),
即为y=-3x+$\frac{10}{3}$;
(2)由f′(x)=x2-4=0,可得x=±2,
由f(2)=-$\frac{4}{3}$,f(-2)=$\frac{28}{3}$,f(-3)=7,f(6)=52,
可得f(x)在[-3,6]上的最大值为52,最小值为-$\frac{4}{3}$.

点评 本题考查导数的运用:求切线的方程和最值,注意运用导数的几何意义和函数的极值与端点处的函数值的比较,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的单调递增区间;
(2)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{sinx,x≥1}\\{{e}^{x},x<1}\end{array}\right.$.
(1)若f(x)≥1,求x的取值范围;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的各项均正数,满足a${\;}_{n+1}^{2}$-a${\;}_{n}^{2}$-2an+1-2an=0,其前n项和为Sn.S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Tn,是否存在最大整数m,使得对任意n∈N*均有T2n>$\frac{m}{15}$成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,已知sinA=$\frac{3}{5}$,tan(A-B)=-$\frac{1}{2}$.
(1)求tanB的值;
(2)若b=5,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线f(x)=x3+x2+x+3在x=-1处的切线恰好与抛物线y2=2px(p>0)相切,求抛物线的方程和抛物线上的切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,设正方体ABCD-A1B1C1D1中,M为AA1上点,A1M:MA=3:1,求截面B1D1M与底面ABCD所成二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:4x2+y2=16
(1)求椭圆C的长轴长和短轴长    
(2)求椭圆C的焦点坐标和离心率
(3)直线l:y=-2x+4与椭圆C相交于A,B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图.在平行六面体ABCD-A1B1C1D1中.
(1)如图1,已知$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow{b}$,$\overrightarrow{D{D}_{1}}$=$\overrightarrow{c}$,点G是侧面B1BCC1的中心,试用向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示下列向量:$\overrightarrow{D{B}_{1}}$,$\overrightarrow{B{A}_{1}}$,$\overrightarrow{C{A}_{1}}$,$\overrightarrow{DG}$.
(2)如图2,点E,F,G分别是$\overrightarrow{{A}_{1}{D}_{1}}$,$\overrightarrow{{D}_{1}D}$,$\overrightarrow{{D}_{1}{C}_{1}}$的中点,请选择恰当的基底向量.证明:①EG∥AC;②平面EFG∥平面AB1C.

查看答案和解析>>

同步练习册答案