精英家教网 > 高中数学 > 题目详情

过抛物线y2=2px(p>0)的焦点F,作直线l交抛物线于A、B两点,A、B在抛物线的准线上的射影分别是M和N,则∠MFN的大小是________.

90°
分析:根据抛物线的定义,可得△AFM是等腰三角形,底角∠MFA=(180°-∠A),同理∠NFB=(180°-∠B).再根据平行线的同旁内角互补,得∠A+∠B=180°,从而∠MFA+∠NFB=∠90°,得到∠MFN的大小为90°.
解答:∵点A在抛物线y2=2px上,F为抛物线的焦点,
AM是A到抛物线准线的距离
∴△AFM中,AM=AF,可得∠FMA=∠MFA=(180°-∠A)
同理可得:∠FNB=∠NFB=(180°-∠B)
∴∠MFA+∠NFB=(360°-∠A-∠B)
∵AM∥BN
∴∠A+∠B=180°,得∠MFA+∠NFB=∠90°;
由此可得∠MFN=180°-(∠MFA+∠NFB)=∠90°
故答案为:90°
点评:本题给出抛物线过焦点的弦在准线上的射影,求射影点对焦点的张角的大小,着重考查了用平面几何理解抛物线的定义的知识点,属于基础題.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线准线上的射影为C,若
AF
=
FB
BA
BC
=48
,则抛物线的方程为(  )
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两条直线分别交抛物线于A(x1,y1),B(x2,y2),若PA与PB的斜率存在且倾斜角互补,则
y1+y2y0
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,O为抛物线的顶点.则△ABO是一个(  )
A、等边三角形B、直角三角形C、不等边锐角三角形D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线AB交抛物线于A,B两点,弦AB的中点为M,过M作AB的垂直平分线交x轴于N.
(1)求证:FN=
12
AB

(2)过A,B的抛物线的切线相交于P,求P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)已知过抛物线y2=2px(p>0)的焦点F的直线交抛物线于M、N两点,直线OM、ON(O为坐标原点)分别与准线l:x=-
p
2
相交于P、Q两点,则∠PFQ=(  )

查看答案和解析>>

同步练习册答案