精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)令函数,若函数有且只有一个零点,试判断与3的大小,并说明理由.

【答案】(1)见解析;(2)见解析

【解析】

(1)先求导,然后讨论的大小,继而求出函数的单调性

(2)对函数求二阶导数,求出函数的单调性,然后结合零点得到关于的表达式,构造新函数后运用导数确定新函数的单调性,继而得出关于零点问题

(1),

①当,即时,时,在上单调递增.

②当,即时,时,

时,.

所以上单调递减,在单调递增.

(2)函数

,令

,所以上单调递增,

时,

所以上有唯一零点,

时,时,,所以的最小值.

由已知函数有且只有一个零点,则

所以

所以

所以单调递减,

因为

所以上有一个零点,在无零点,

有零点必小于3,

综上:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某校参加期中考试的高一学生中随机抽取100名得到这100名学生语文成绩的频率分布直方图如图所示,其中成绩分组区间是:.

1)求图中的值;

2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;

3)已知学生的语文成绩为123分,现从成绩在中的学生中随机抽取2人参加演讲赛,求学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{}满足

1)若{}是等差数列,求其通项公式;

2)若{}满足{}的前项和,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠APC90°,∠BPD120°,PBPD

1)求证:平面APC⊥平面BPD

2)若AB2AP2,求三棱锥C-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,的周长为8,直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)设是椭圆上两动点,线段的中点为的斜率分别为为坐标原点),且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,点的极坐标为为圆心4为半径;又直线的极坐标方程为

(Ⅰ)求直线和圆的普通方程;

试判定直线和圆的位置关系.若相交,则求直线被圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数上的最大值和最小值;

2)求证:当时,函数的图象在的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下五个结论:

①函数是偶函数;

②当时,函数的值域是

③等差数列的前项和为,若,则

④已知定义域为的函数,当且仅当时,成立.

函数的最小值4

则上述结论中正确的是______(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲烷分子由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都相等的四面体,四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中心,它与每个氢原子的距离都是,若将碳原子和氢原子均视为一个点,则任意两个氢原子之间的距离为(

A.B.C.D.

查看答案和解析>>

同步练习册答案