精英家教网 > 高中数学 > 题目详情
一名小学生的年龄和身高(单位:cm)的数据如下:
年龄x6789
身高y118126136144
由散点图可知,身高y与年龄x之间的线性回归直线方程为
y
=8.8x+
a
,预测该学生10岁时的身高为(  )
参考公式:回归直线方程是:
y
=
b
x+
a
a
=
.
y
-
b
.
x
A.154B.153C.152D.151
由题意,
.
x
=
6+7+8+9
4
=7.5,
.
y
=
118+126+136+144
4
=131
代入线性回归直线方程为
y
=8.8x+
a
,可得131=8.8×7.5+
?
a
,∴
?
a
=65

?
y
=8.8x+65

∴x=10时,
?
y
=8.8×10+65=153

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某城市理论预测2001年到2005年人口总数与年份的关系如下表所示

(1)请画出上表数据的散点图;
(2)求人口总数y关于年份x的线性回归方程;
(3)试估计到20011年人口总数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
房屋面积(m211511080135105
销售价格(万元)24.821.618.429.222
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150m2时的销售价格.
(参考公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x2i
-n
.
x
2
?
a
=
.
y
-
?
b
.
x
5
i=1
x2i=60975
5
i=1
xiyi=115×24.8+110×21.6+80×18.4+135×29.2+105×22=12952

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设三组实验数据(x1,y1),(x2,y2),(x3,y3)的回归直线方程是:
y
=
b
x+
a
,使代数式[y1-(
b
x1+
a
)]2+[y2-(
b
x2+
a
)]2+[y3-(
b
x3+
a
)]2的值最小时,
b
=
x1y1+x2y2+x3y3-3
.
x
.
y
x12+x22-3
.
x
2
a
=
.
y
-
b
x,
.
x
.
y
分别是这三组数据的横、纵坐标的平均数).若有六组数据列表如下:
x234567
y4656.287.1
(1)求上表中前三组数据的回归直线方程;
(2)若|yi-(
b
xi+
a
)|≤0.2,即称(xi,yi)为(1)中回归直线的拟和“好点”,求后三组数据中拟和“好点”的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某产品的成本费用x与销售额y的统计数据如下表:
成本费用x(万元)2345
销售额y(万元)26394954
根据上表可得回归方程
y
=
b
x+
a
中的
b
为9.4,据此模型预报成本费用为6万元时销售额为(  )
A.72.0万元B.67.7万元C.65.5万元D.63.6万元

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了解某市心肺疾病是否与性别有关,某医院随机对入院50人进行了问卷调查,得到如下的列联表.
患心肺疾病不患心肺疾病合计
5
10
合计50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
3
5

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:

(Ⅰ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
成绩小于100分成绩不小于100分合计
甲班a=______b=______50
乙班c=24d=2650
合计e=______f=______100
(Ⅱ)现从乙班50人中任意抽取3人,记ξ表示抽到测试成绩在[100,120)的人数,求ξ的分布列和数学期望Eξ.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.2046.6357.87910.828

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在一次独立性检验中,得出2×2列联表如下:
y1y2合计
x12008001000
x2180m180+m
合计380800+m1180+m
且最后发现,两个分类变量x和y没有任何关系,则m的可能值是(  )
A.200B.720C.100D.180

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.
(1)求X的分布列;
(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.

查看答案和解析>>

同步练习册答案