精英家教网 > 高中数学 > 题目详情

如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.

(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.

(1)  (2)存在点P满足题意,点P的坐标为(±,2)

解析解:(1)因为抛物线C1的准线方程为y=-,
所以圆心M到抛物线C1的准线的距离为
=.
(2)设点P的坐标为(x0,),抛物线C1在点P处的切线交直线l于点D.
再设A,B,D的横坐标分别为xA,xB,xD,
过点P(x0,)的抛物线C1的切线方程为
y-=2x0(x-x0).①
当x0=1时,过点P(1,1)与圆C2相切的直线PA的方程为
y-1=(x-1).
可得xA=-,xB=1,xD=-1,xA+xB≠2xD.
当x0=-1时,过点P(-1,1)与圆C2相切的直线PB的方程为y-1=-(x+1),
可得xA=-1,xB=,xD=1,xA+xB≠2xD,
所以-1≠0.
设切线PA、PB的斜率为k1,k2,
则PA:y-=k1(x-x0),②
PB:y-=k2(x-x0),③
将y=-3分别代入①②③得
xD=(x0≠0),
xA=x0-,
xB=x0-(k1,k2≠0),
∴xA+xB=2x0-(+3)(+).
=1,
即(-1)-2(+3)x0k1+(+3)2-1=0.
同理,(-1)-2(+3)x0k2+(+3)2-1=0.
∴k1、k2是方程(-1)k2-2(+3)x0k+(+3)2-1=0的两个不相等的根,
从而k1+k2=,
k1·k2=.
因为xA+xB=2xD,
所以2x0-(3+)(+)=,
+=.
从而=,
进而得=8,
所以x0.
综上所述,存在点P满足题意,点P的坐标为(±,2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

根据下列条件,求双曲线方程.
(1)与双曲线=1有共同的渐近线,且过点(-3,2);
(2)与双曲线=1有公共焦点,且过点(3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆的两个焦点,为坐标原点,点在椭圆上,且,⊙是以为直径的圆,直线与⊙相切,并且与椭圆交于不同的两点

(1)求椭圆的标准方程;
(2)当,且满足时,求弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:+=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为.
(1)求椭圆E的方程;
(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足=+,证明·为定值,并求出该值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆C:  +=1(a>b>0)的离心率e=,a+b=3.

(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,若动点满足
(1)求动点的轨迹曲线的方程;
(2)在曲线上求一点,使点到直线:的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆,两点, 到直线的距离为,连接椭圆的四个顶点得到的菱形面积为.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求的取值范围;
(3)作直线与椭圆交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).
(1)求双曲线的方程.
(2)若点M(3,m)在双曲线上,求证:·=0.
(3)求△F1MF2的面积.

查看答案和解析>>

同步练习册答案