精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,平面,底面为直角梯形,,

(1)求证:⊥平面
(2)求异面直线所成角的大小。

(1)证明如下:(2)异面直线所成角的大小为45o.

解析试题分析:(1)本小题是一个证明线面垂直的题,利用线面垂直的判定定理求解,如图
又∵ ;
(2)异面直线所成的角可通过平移找角,∵异面直线所成角是或其补角
在Rt△SBC中可解的=45o异面直线所成角的大小为45o.
试题解析:(1)


又∵   (6分)
(2)∵
异面直线所成角是或其补角

⊥平面

在Rt△SBC中, ∵,=45o
异面直线所成角的大小为45o.      (12分)
考点:本题考查线线、线面垂直的判断和性质,异面直线所成的角,考查空间想像能力,推理判断能力及转化的能力,解题时要严谨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在四棱锥PABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
 
(1)求证:PCBD
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥EBCD的体积取到最大值.
①求此时四棱锥EABCD的高;
②求二面角ADEB的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是正方形,交于点底面的中点.

(1)求证:平面
(2)若,在线段上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中,,异面直线所成的角等于,设

(1)求的值;
(2)求平面与平面所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平行四边形ABCD(图1)中,AB=4,BC=5,对角线AC=3,将三角形ACD沿AC折起至PAC位置(图2),使二面角为600,G,H分别是PA,PC的中点.

(1)求证:PC平面BGH;
(2)求平面PAB与平面BGH夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.

(1)求证:PC⊥BC
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABCD中,AD//BC,∠ADC=90º,AE⊥平面ABCD,EF//CD,BC=CD=AE=EF==1.

(Ⅰ)求证:CE//平面ABF;
(Ⅱ)求证:BE⊥AF;
(Ⅲ)在直线BC上是否存在点M,使二面角E-MD-A的大小为?若存在,求出CM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面平面,.设分别为中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面;
(Ⅲ)试问在线段上是否存在点,使得过三点 ,,的平面内的任一条直线都与平面平行?若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,五面体中,四边形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分别为AE、BD、EF的中点.

求证:(I)PQ//平面BCE; 
(II)求证:AM平面ADF;

查看答案和解析>>

同步练习册答案