精英家教网 > 高中数学 > 题目详情
某银行准备新设一种定期存款业务,经预测,存款量与存款利率成正比,比例系数为k (k>0),贷款的利率为4.8%,假设银行吸收的存款能全部放贷出去.若存款利率为x(x∈(0,0.048)),则存款利率为多少时,银行可获得最大利益(  )
A、0.012
B、0.024
C、0.032
D、0.036
考点:根据实际问题选择函数类型
专题:应用题,导数的综合应用
分析:建立起关于收益的函数,利用函数取最大值时,求得相应的x的值,即为使银行获得最大收益的存款利率.
解答: 解:用y表示收益,由设存款量是kx2,利率为x,贷款收益为0.048kx2
则收益y=0.048kx2-kx3,x∈(0,0.048),
∵y′=0.096x-3kx2=3kx(0.032-x)
∴当y′>0,0<x<0.032
当y′<0,0.032<x<0.048
故收益y在x=0.032时取得最大值
则为使银行收益最大,应把存款利率定为0.032.
故选C.
点评:本题主要考查函数在实际生活中的应用、导数求最值的方法等,解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在空间内,下列命题是否成立,若成立,给予证明,不成立,给予反例.
(1)α,β,γ为空间三平面,若α⊥β,β⊥γ,则α∥γ;
(2)α,β为平面,a为直线.若a⊥α,a⊥β,则α∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C的参数方程为
x=2cosθ
y=3sinθ
直线l:
x=2+t
y=2-2t
(t为参数).
(Ⅰ)写出曲线C与直线l的普通方程;
(Ⅱ)过曲线C上任一点P作与l夹角为60°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-3在点(-1,-2)处切线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,设向量
AB
=
a1
BC
=
a2
DA
=
a3
CD
=
a4
满足
a1
+
a2
+
a3
+
a4
=
0
,且
an
=(xnyn)
,数列{xn},{yn}分别是等差数列、等比数列,则四边形ABCD是(  )
A、平行四边形B、矩形
C、梯形D、菱形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x-
π
2
)(x∈R),下面命题中,真命题是
 

(1)函数f(x)的最小正周期为2π;
(2)函数f(x)在区间[0,
π
2
]上是增函数;
(3)函数f(x)的图象关于直线x=0对称;
(4)函数f(x)是奇函数;
(5)函数f(x)的图象是将y=sinx向左平移
π
2
个单位得到的.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
9
+
y2
5
=1的焦距是(  )
A、3
B、6
C、2
5
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-5x+3-
k(x-1)
ex
,g(x)=-x+xlnx(k∈R),若对于?x1∈(1,+∞),?x2∈(0,+∞)都有f(x1)≥g(x2)成立,则k的取值范围(  )
A、(-∞,
1
e3
]
B、(-∞,-e3]
C、(-∞,-e]
D、(-∞,
1
e
]

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的函数,且图象关于原点对称,若f(m)•f(-m)=-4,f(m)>0,则log8f(m)=
 

查看答案和解析>>

同步练习册答案