精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:①函数上的值域为;②函数是奇函数;③函数上是减函数;其中正确的个数为______

【答案】0

【解析】

利用二次函数的图像与性质可判断①的正误,利用奇函数的定义域具有对称性可判断②的正误,利用函数的单调性定义可判③的正误.

解:对于,∵函数y=(x12+2的对称轴为x1,开口向上,

∴该函数在上先减后增,

f1)=2f3)=6f0)=3

∴函数y=(x12+2上的值域为[26],故错误;

对于,∵函数yx3x(﹣11],其定义域不关于原点对称,故该函数不是奇函数,故错误;

对于,∵函数fx在(﹣0),(0+∞)上是减函数,在R上不是减函数,故错误;

故答案为:0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某贫困地区有1500户居民,其中平原地区1050户,山区450户,为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元)

(I)应收集多少户山区家庭的样本数据?

(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为, , , ,,.如果将频率率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;

(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

超过2万元

不超过2万元

总计

平原地区

山区

5

总计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个五个命题:

①“”是“”的充要条件

②对于命题,使得,则,均有

③命题“若,则方程有实数根”的逆否命题为:“若方程

没有实数根,则”;

④函数只有个零点;

使是幂函数,且在上单调递减.

其中是真命题的个数为:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数上存在满足,则称函数是在上的“双中值函数”,已知函数上的“双中值函数”,则函数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:

①从1,2,3,4,5中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的

2个数均为偶数”,则

②某班共有45名学生,其中30名男同学,15名女同学,老师随机抽查了5名同学的作业,用表示抽查到的女生的人数,则

③设随机变量服从正态分布,则

④由直线,曲线轴所围成的图形的面积是.

其中所有正确结论的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.

(1)把y表示为x的函数;

(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;

(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地合作农场的果园进入盛果期,果农利用互联网电商渠道销售苹果,苹果单果直径不同则单价不同,为了更好的销售,现从该合作农场果园的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间内(单位:),统计的茎叶图如图所示:

(Ⅰ)按分层抽样的方法从单果直径落在的苹果中随机抽取6个,则从的苹果中各抽取几个?

(Ⅱ)从(Ⅰ)中选出的6个苹果中随机抽取2个,求这两个苹果单果直径均在内的概率;

(Ⅲ)以此茎叶图中单果直径出现的频率代表概率,若该合作农场的果园有20万个苹果约5万千克待出售,某电商提出两种收购方案:方案:所有苹果均以5.5元/千克收购;方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径在内按35元/箱收购,在内按45元/箱收购,在内按55元/箱收购.包装箱与分拣装箱费用为5元/箱(该费用由合作农场承担).请你通过计算为该合作农场推荐收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若在区间[01]上有最大值1和最小值-2.求ab的值;

2)在(1)条件下,若在区间上,不等式fx 恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形中, 底面 底面且有.

(1)求证:

(2)若线段的中点为,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案