精英家教网 > 高中数学 > 题目详情
15.已知函数y=acosx+b的最大值为1,最小值为-3,试确定$f(x)=bsin(ax+\frac{π}{3})$的单调区间.

分析 分类讨论,求出a,b,再利用正弦函数的单调区间,确定$f(x)=bsin(ax+\frac{π}{3})$的单调区间.

解答 解:(1)当a>0时,$\left\{\begin{array}{l}{a+b=1}\\{-a+b=-3}\end{array}\right.$,∴a=2,b=-1,f(x)=-sin(2x+$\frac{π}{3}$),
由-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,可得函数的单调减区间为[kπ-$\frac{5}{12}$π,kπ+$\frac{1}{12}$π](k∈Z),单调增区间为[kπ+$\frac{1}{12}$π,kπ+$\frac{7}{12}$π](k∈Z),
$f(x)=-sin(2x+\frac{π}{3})$$在[kπ-\frac{5}{12}π,kπ+\frac{π}{12}]↓,在[kπ+\frac{π}{12},kπ+\frac{7}{12}π]↑$;
(2)当a<0时,$\left\{\begin{array}{l}{-a+b=1}\\{a+b=-3}\end{array}\right.$,∴a=-2,b=-1,f(x)=sin(2x-$\frac{π}{3}$),
由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,可得函数的单调增区间为[kπ-$\frac{1}{12}$π,kπ+$\frac{5}{12}$π](k∈Z),单调减区间为[kπ+$\frac{5}{12}$π,kπ+$\frac{11}{12}$π](k∈Z).

点评 本题考查三角函数的图象与性质,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x4-8x3+18x2-1,x∈[-1,4]
(1)求f(x)的单调区间;
(2)求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:关于x的方程x2-ax+1=0有实根;命题q:对任意x∈[-1,1],不等式a2-3a-x+1≤0恒成立,若“p∧q”是假命题,“?q”也是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=2cosx的定义域为$[\frac{π}{3},π]$,值域为[a,b],
(Ⅰ)求a,b的值;
(Ⅱ)求函数y=asinx+b的最值及取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$sin(\frac{2π}{3}+α)=\frac{1}{3}$,则$cos(\frac{5π}{6}-α)$=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.袋中共有10个大小相同的黑球和白球,若从袋中任意摸出2个球,至少有一个黑球的概率为$\frac{7}{9}$.
(1)求白球的个数;
(2)现从中不放回地取球,每次取1个球,取2次,已知第二次取得白球,求第一次取得黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.sin21°+sin22°+sin23°+…+sin288°+sin289°的值为 (  )
A.89B.44C.$44\frac{1}{2}$D.$44+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(x-$\frac{2}{\sqrt{x}}$)7的二项展开式中,x4的系数为84(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点F作倾斜角为60°的直线l与椭圆C交于A,B两点,则$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案