【题目】已知函数f(x)= ax3﹣x2+x在区间(0,2)上是单调增函数,则实数a的取值范围为 .
【答案】a≥1
【解析】解:∵函数f(x)= ax3﹣x2+x在区间(0,2)上单调递增,
∴f′(x)=ax2﹣2x+1≥0,在x∈(0,2)恒成立,
∴a≥ ,在x∈(0,2)恒成立,
令g(x)= ,x∈(0,2),
g′(x)= <0,
故g(x)在(1,2)递减,(0,1)是增函数,函数的最大值为:g(1)=1,
故g(x)≥g(1)=1,
故a≥1,
所以答案是:a≥1.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 ;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xex+ax2+2x+1在x=﹣1处取得极值.
(1)求函数f(x)的单调区间;
(2)若函数y=f(x)﹣m﹣1在[﹣2,2]上恰有两个不同的零点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx﹣(a+2)x+x2 .
(1)求函数f(x)的单调区间;
(2)若对于任意a∈[4,10],x1 , x2∈[1,2],恒有| |≤ 成立,试求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|(x+2m)(x﹣m+4)<0},其中m∈R,集合B={x| >0}.
(1)若BA,求实数m的取值范围;
(2)若A∩B=,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+ax2﹣ax,其中a∈R.
(1)当a=0时,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在定义域上有且仅有一个极值点,求实数a的取值范围;
(3)若对任意x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上. (Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若∠APO=∠BPO,(其中O为坐标原点),
求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com