精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知函数=.
(1)求函数在区间上的值域;
(2)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.

(1)值域为 .(2)满足条件的不存在. (3)函数不具备性质“”.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(Ⅰ)若函数上为增函数,求正实数的取值范围;
(Ⅱ)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数,曲线过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直。
①求a,b的值;
②求该函数的单调区间和极值。
③若函数在上是增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(1)判断的单调性并证明;
(2)若满足,试确定的取值范围。
(3)若函数对任意时,恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
设函数
⑴当且函数在其定义域上为增函数时,求的取值范围;
⑵若函数处取得极值,试用表示
⑶在⑵的条件下,讨论函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数的单调递增区间为
(Ⅰ)求证:
(Ⅱ)当取最小值时,点是函数图象上的两点,若存在使得,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题分12分)                        
定义.
(Ⅰ)求曲线与直线垂直的切线方程;
(Ⅱ)若存在实数使曲线点处的切线斜率为,且,求实数的取值范围.

查看答案和解析>>

同步练习册答案