精英家教网 > 高中数学 > 题目详情

已知的导函数,且,设

(Ⅰ)讨论在区间上的单调性;
(Ⅱ)求证:
(Ⅲ)求证:

减 , 和增 ;(2)(3)详见解析

解析试题分析:(Ⅰ)利用 的导函数找到原函数即可研究 的单调性, (Ⅱ)把证明不等式转化为证明不等式 ,然后通过求导研究函数的值域, (Ⅲ)难点①转化,②注意运用第(Ⅱ)问产生的新结论.导致③放缩后进行数列求和.
试题解析:(Ⅰ)由 且 得. 定义域为 
 
 ,得 或  
 时,由,得 ;由 ,得,或
 在 上单调递减,在 和 上单调递增.
 时, 由,得 ;由 ,得,
 在 上单调递减,在上单调递增.
(Ⅱ)设 ,令 ,得, ,得,
 在 上单调递减,在上单调递增.
 在 处有极大值,即最大值0, 同理可证 , 即 
(Ⅲ)由(2)知,



时取等号.
考点:导数运算及运用导数研究函数的性质,数列求和及不等式中的放缩法的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).
提示:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值。
(Ⅰ)证明:
(Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1) 当时,求函数的单调区间;
(2) 当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(I)当时,求函数的单调区间;
(II)当时, 若,使得, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求的极值,并证明:若
(2)设,且,证明:
,由上述结论猜想一个一般性结论(不需要证明);
(3)证明:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)当时,对任意R,存在R,使,求实数的取值范围;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(其中).
(Ⅰ) 当时,求函数的单调区间;
(Ⅱ) 当时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)求在区间上的最值

查看答案和解析>>

同步练习册答案