精英家教网 > 高中数学 > 题目详情

(2)已知向量=(2,2),向量与向量的夹角为,且·=-2,①求向量

②若,其中A、C是△ABC的内角,若三角形的三内角A、B、C依次成等差数列,试求|+|的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中,正确的个数为(  )
(1)
AB
+
MB
+
BC
+
OM
+
CO
=
AB

(2)已知向量
a
=(6,2)与
b
=(-3,k)的夹角是钝角,则k的取值范围是k<0
(3)若向量
e1
=(2,-3),
e2
=(
1
2
,-
3
4
)
能作为平面内所有向量的一组基底
(4)若
a
b
,则
a
b
上的投影为|
a
|

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省辽南协作体高一下学期期中考试数学(文) 题型:解答题

已知向量=(1,2),=(cosa,sina),设=+t为实数).
(1)若a=,求当||取最小值时实数的值;
(2)若,问:是否存在实数,使得向量和向量的夹角为,若存在,请求出t的值;若不存在,请说明理由.
(3)若,求实数的取值范围A,并判断当时函数的单调性.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省辽南协作体高一下学期期中考试数学(理) 题型:解答题

已知向量=(1,2),=(cosa,sina),设=+t为实数).
(1)若a=,求当||取最小值时实数的值;
(2)若,问:是否存在实数,使得向量和向量的夹角为,若存在,请求出t的值;若不存在,请说明理由.
(3)若,求实数的取值范围A,并判断当时函数的单调性.

查看答案和解析>>

科目:高中数学 来源:2013届辽宁省辽南协作体高一下学期期中考试数学(理) 题型:解答题

已知向量 =(1,2) ,=(cosa,sina),设=+t为实数).

(1)若a=,求当||取最小值时实数的值;

(2)若,问:是否存在实数,使得向量和向量的夹角为,若存在,请求出t的值;若不存在,请说明理由.

(3)若,求实数的取值范围A,并判断当时函数的单调性.

 

查看答案和解析>>

科目:高中数学 来源:2013届辽宁省辽南协作体高一下学期期中考试数学(文) 题型:解答题

已知向量 =(1,2) ,=(cosa,sina),设=+t为实数).

(1)若a=,求当||取最小值时实数的值;

(2)若,问:是否存在实数,使得向量和向量的夹角为,若存在,请求出t的值;若不存在,请说明理由.

(3)若,求实数的取值范围A,并判断当时函数的单调性.

 

查看答案和解析>>

同步练习册答案