【题目】如图,椭圆的右顶点为,左、右焦点分别为、,过点
且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点在轴上的射影恰好为点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】在数列中, ,其前项和为,满足,其中.
(1)设,证明:数列是等差数列;
(2)设为数列的前项和,求;
(3)设数列的通项公式为为非零整数),试确定的值,使得对任意,都有数列为递增数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足, ,其中.
(1)设,求证:数列是等差数列,并求出的通项公式;
(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .
(1)求椭圆的离心率;
(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线与的斜率之积;
(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为、,直线的横、纵截距分别为、,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若函数是奇函数,求实数的值;
(2)若对任意的实数,函数(为实常数)的图象与函数的图象总相切于一个定点.
① 求与的值;
② 对上的任意实数,都有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c为△ABC的三个内角A,B,C的对边,向量=( , ﹣1),=(cosA,sinA).若⊥ , 且αcosB+bcosA=csinC,则角A,B的大小分别为( )
A.,
B.,
C.,
D.,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,△BCD是正三角形,AB=AD=1,∠BAD=θ.
(Ⅰ)将四边形ABCD的面积S表示成关于θ的函数;
(Ⅱ)求S的最大值及此时θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的定义域为,对给定的正数,若存在闭区间,使得函数满足:①在内是单调函数;②在上的值域为,则称区间为的级“理想区间”.下列结论错误的是( )
A. 函数()存在1级“理想区间”
B. 函数()不存在2级“理想区间”
C. 函数()存在3级“理想区间”
D. 函数, 不存在4级“理想区间”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com