精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

【答案】(1)(2)

【解析】试题分析:Ⅰ)根据题意 ,点在直线上,并且 ,得到椭圆方程;(Ⅱ)根据三角形面积公式可得,即,直线方程与椭圆方程联立,得到根与系数的关系,根据也得到坐标的关系式,消参后,根据的取值范围求.

试题解析:(Ⅰ)因为轴,得到点

所以 ,所以椭圆的方程是

(Ⅱ)因为

所以.由(Ⅰ)可知,设方程

联立方程得: .即得(*)

,有

代入(*)可得:

因为,有

. (没考虑到扣1分)

综上所述,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列中, ,其前项和为,满足,其中.

1)设,证明:数列是等差数列;

2)设为数列的前项和,求

3)设数列的通项公式为为非零整数),试确定的值,使得对任意,都有数列为递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中.

(1)设,求证:数列是等差数列,并求出的通项公式;

(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .

(1)求椭圆的离心率;

(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线的斜率之积;

(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为,直线的横、纵截距分别为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若函数是奇函数,求实数的值;

(2)若对任意的实数,函数为实常数)的图象与函数的图象总相切于一个定点.

① 求的值;

② 对上的任意实数,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c为△ABC的三个内角A,B,C的对边,向量=( , ﹣1),=(cosA,sinA).若 , 且αcosB+bcosA=csinC,则角A,B的大小分别为(  )
A.,
B.,
C.,
D.,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,△BCD是正三角形,AB=AD=1,∠BAD=θ.
(Ⅰ)将四边形ABCD的面积S表示成关于θ的函数;
(Ⅱ)求S的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,则当时,讨论单调性;

(2)若,且当时,不等式在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,对给定的正数,若存在闭区间,使得函数满足:①内是单调函数;②上的值域为,则称区间级“理想区间”.下列结论错误的是( )

A. 函数)存在1级“理想区间”

B. 函数)不存在2级“理想区间”

C. 函数)存在3级“理想区间”

D. 函数 不存在4级“理想区间”

查看答案和解析>>

同步练习册答案