精英家教网 > 高中数学 > 题目详情
2.已知实数2,m,8构成等比数列,则圆锥曲线$\frac{x^2}{m}+{y^2}=1$的离心率为$\frac{{\sqrt{3}}}{2}或\sqrt{5}$.

分析 由2,m,8构成一个等比数列,得到m=±4.当m=4时,圆锥曲线是椭圆;当m=-4时,圆锥曲线是双曲线,由此入手能求出离心率.

解答 解:∵2,m,8构成一个等比数列,
∴m=±4.
当m=4时,圆锥曲线$\frac{x^2}{m}+{y^2}=1$是椭圆,它的离心率是$\frac{\sqrt{3}}{2}$;
当m=-4时,圆锥曲线$\frac{x^2}{m}+{y^2}=1$是双曲线,它的离心率是$\sqrt{5}$.
故答案为:$\frac{{\sqrt{3}}}{2}或\sqrt{5}$.

点评 本题考查圆锥曲线的离心率的求法,解题时要注意等比数列的性质的合理运用,注意分类讨论思想的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响,现调查了某市500名居民的工作场所好呼吸系统健康,得到2×2列联表如下:
室外工作室内工作合计
有呼吸系统疾病150
无呼吸系统疾病100
合计200
(1)补全2×2列联表;
(2)判断是否在范错误的概率不超过0.05的前提下认为感染呼吸系统疾病与工作场所有关.
公式与临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率是$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的一个焦点与短轴的两个端点的连线构成等边三角形,直线x+$\sqrt{2}$y-2$\sqrt{3}$=0与以椭圆C的右焦点F为圆心,以椭圆的短半轴长为半径的圆相切
(1)求椭圆C的方程;
(2)过定点D(0,2),且斜率为k的直线l与椭圆C相当于M、N两点
①若线段MN的中点的横坐标为1,求直线l的方程;
②若点F在以MN为直径的圆内部,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在频率分布直方图中,小矩形的面积表示(  )
A.$\frac{频率}{样本容量}$B.组距×频率C.频率D.$\frac{频率}{组距}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.计算${∫}_{0}^{2}$x3dx=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在三棱锥O-ABC中,D为BC的中点,若以向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$为一组基底,则向量$\overrightarrow{DA}$=$\overrightarrow{OA}$$-\frac{1}{2}$$\overrightarrow{OB}$$-\frac{1}{2}$$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C的两个焦点分别为F1(-2,0),F2(2,0),且椭圆C经过点(-2,3).
(1)求椭圆C的方程;
(2)求椭圆C内接矩形面积的最大值及此时矩形的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=$\frac{3}{2}$,2an=an-1+2n-1,求{an}的通项公式.

查看答案和解析>>

同步练习册答案