A. | (-∞,-1)∪(1,+∞) | B. | (-∞,-1)∪(0,1) | C. | (-1,0)∪(0,1) | D. | (-1,0)∪(1,+∞) |
分析 由题意可得函数g(x)=xf(x)是R上的奇函数,画出函数g(x)=xf(x)的单调性的示意图,数形结合求得不等式x•f(x)>0的解集.
解答 解:∵(x•f(x))′=f(x)+x•f′(x)>0,
故函数g(x)=xf(x)在(0,+∞)上单调递增.
再根据函数f(x)是定义在R上的偶函数,
可得函数g(x)=xf(x)是R上的奇函数,
故函数g(x)=xf(x)是R上的奇函数,
故函数g(x)=xf(x)在(-∞,0)上单调递增.
∵f(1)=0,∴f(-1)=0,
故函数y=xf(x)的单调性的示意图,如图所示:
由不等式x•f(x)>0,
可得 x与f(x)同时为正数或同时为负数,∴x>1,或-1<x<0,
故不等式x•f(x)>0的解集为:(-1,0)∪(1,+∞),
故选:D.
点评 本题主要考查函数的奇偶性的性质,函数的导数与单调性的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 对任意x∈R,使得x2<0 | B. | 不存在x∈R,使得x2<0 | ||
C. | 存在x0∈R,都有$x_0^2≥0$ | D. | 存在x0∈R,都有$x_0^2<0$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com