精英家教网 > 高中数学 > 题目详情
6.设数列{an}满足a1=a,an+1an-an2=1(n∈N*
(I)若a3=$\frac{5}{2}$,求实数a的值;
(Ⅱ)设bn=$\frac{{a}_{n}}{\sqrt{n}}$(n∈N*).若a=1,求证$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).

分析 (Ⅰ)由已知得a2a-a2=1,解得${a}_{2}=\frac{{a}^{2}+1}{a}$,由a3=$\frac{5}{2}$,得$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$或$\frac{{a}^{2}+1}{a}$=2,由此能求出实数a的值.
(Ⅱ)由已知得${b}_{n+1}=\frac{{a}_{n+1}}{\sqrt{n+1}}$=$\frac{{a}_{n}+\frac{1}{{a}_{n}}}{\sqrt{n+1}}$,由${a}_{n}+\frac{1}{{a}_{n}}$$≥2\sqrt{{a}_{n}•\frac{1}{{a}_{n}}}$=2,能证明${b}_{n+1}≥\frac{2}{\sqrt{2}}=\sqrt{2}$=b2,再用数学归纳法证明bn<$\frac{3}{2}$,n≥2.由此能证明$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).

解答 (Ⅰ)解:∵数列{an}满足a1=a,an+1an-an2=1(n∈N*),
∴a2a-a2=1,解得${a}_{2}=\frac{{a}^{2}+1}{a}$,
∵a3=$\frac{5}{2}$,∴$\frac{5}{2}•\frac{{a}^{2}+1}{a}-(\frac{{a}^{2}+1}{a})^{2}=1$,
解得$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$或$\frac{{a}^{2}+1}{a}$=2,
由$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$解得a∈∅,由$\frac{{a}^{2}+1}{a}$=2,解得a=1.
∴实数a的值为1.
(Ⅱ)证明:当a=1时,数列{an}满足a1=1,an+1an-an2=1(n∈N*),
∴${a}_{n+1}={a}_{n}+\frac{1}{{a}_{n}}$,
∴${a}_{2}=1+\frac{1}{1}$=2,${a}_{3}=2+\frac{1}{2}=\frac{5}{2}$,${a}_{4}=\frac{5}{2}+\frac{2}{5}$=$\frac{24}{10}$,…
∵bn=$\frac{{a}_{n}}{\sqrt{n}}$(n∈N*),
∴${b}_{n+1}=\frac{{a}_{n+1}}{\sqrt{n+1}}$=$\frac{{a}_{n}+\frac{1}{{a}_{n}}}{\sqrt{n+1}}$,
∵an>0,∴${a}_{n}+\frac{1}{{a}_{n}}$$≥2\sqrt{{a}_{n}•\frac{1}{{a}_{n}}}$=2,当且仅当${a}_{n}=\frac{1}{{a}_{n}}$,即an=1=a1时,取等号,
∴${b}_{n+1}≥\frac{2}{\sqrt{2}}=\sqrt{2}$=b2
再证bn<$\frac{3}{2}$,n≥2.
(a)n=2时,${b}_{2}=\sqrt{2}$,满足$\sqrt{2}<\frac{3}{2}$.
(b)假设当n=k,(k>2)时有bk<$\frac{3}{2}$,等价于$\frac{{a}_{k}}{\sqrt{k}}<\frac{3}{2}\sqrt{k}$,
∵$\frac{{a}_{k}}{\sqrt{k}}≥\sqrt{2}$,∴$\sqrt{2}k<{a}_{k}<\frac{3\sqrt{k}}{2}$,
当n=k+1时,${b}_{k+1}=\frac{{a}_{k+1}}{\sqrt{k+1}}$<$\frac{f(\frac{3}{2}\sqrt{k})}{\sqrt{k+1}}$=$\frac{\frac{1}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}$,
∴只需证$\frac{\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}$<$\frac{3}{2}$.
证明如下:∵k>2,∴k>$\frac{16}{9}$,
∴9k>16,∴25k>16(k+1),∴5$\sqrt{k}$>4$\sqrt{k+1}$,
∴$\frac{5}{2}\sqrt{k}$>2$\sqrt{k+1}$,∴$\frac{5}{6}\sqrt{k}>\frac{2}{3}\sqrt{k+1}$,
∴$\frac{3}{2}\sqrt{k}>\frac{2}{3}(\sqrt{k+1}+\sqrt{k})$,
∴$\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{1}{\frac{2}{3}(\sqrt{k+1}+\sqrt{k})}$,∴$\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{3}{2}(\sqrt{k+1}-\sqrt{k})$,
∴$\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{3}{2}\sqrt{k+1}$,
∴$\frac{\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}<\frac{3}{2}$,
∴n=k+1时,${b}_{k+1}<\frac{3}{2}$成立.
综合(a),(b)知bn<$\frac{3}{2}$.
综上所述:$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).

点评 本题考查实数值的求法,考查不等式的证明,综合性强、难度大,解题时要认真审题,注意均值定理、数学归纳法、数列知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图,由曲线y=sinx,直线x=$\frac{3}{2}$π与x轴非负半轴围成的阴影部分面积是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.根据表,能够判断方程f(x)=g(x)在四个区间:①(-1,0);②(0,1);③(1,2);④(2,3)中有实数解的是②.(将正确的序号都填上)
x-10123
f(x)-0.63.15.45.97
g(x)-0.53.44.85.26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若tan2x-sin2x=$\frac{16}{5}$,则tan2xsin2x=$\frac{16}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:方程(m-1)x2+(m+2)y2=(m-1)(m+2)表示的曲线是双曲线;命题q:不等式3x2-m>0在区间(-∞,-1)上恒成立,若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三棱锥P-ABC如图所示,平面PAC⊥平面ABC,正三角形ABC的面积为9$\sqrt{3}$,PC=4,PA=2$\sqrt{13}$,M是AB边上的一动点,则PM的最小值为(  )
A.2$\sqrt{43}$B.$\sqrt{43}$C.$\sqrt{11}$D.2$\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某医药公司经销某种品牌药品,每件药品的成本为6元,预计当每件药品的售价为x元(9≤x≤11)时,一年的销售量为$\frac{48}{x-5}$万件,并且全年该药品需支付2x万元的宜传及管理费.
(1)求该医药公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件药品的售价多少元时,该公司一年的利润L最大,并求出L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x,y∈R且x,y满足方程x2+4y2=1,试求f(x,y)=3x+4y的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线y=x-b与曲线C:y=$\sqrt{1-{x}^{2}}$-1有唯一交点,则b的取值范围是(  )
A.{-$\sqrt{2}$-1,$\sqrt{2}$-1}B.{-$\sqrt{2}$+1,$\sqrt{2}$+1}C.[-2,0]D.(0,2]∪{1-$\sqrt{2}$}

查看答案和解析>>

同步练习册答案