分析 (Ⅰ)由已知得a2a-a2=1,解得${a}_{2}=\frac{{a}^{2}+1}{a}$,由a3=$\frac{5}{2}$,得$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$或$\frac{{a}^{2}+1}{a}$=2,由此能求出实数a的值.
(Ⅱ)由已知得${b}_{n+1}=\frac{{a}_{n+1}}{\sqrt{n+1}}$=$\frac{{a}_{n}+\frac{1}{{a}_{n}}}{\sqrt{n+1}}$,由${a}_{n}+\frac{1}{{a}_{n}}$$≥2\sqrt{{a}_{n}•\frac{1}{{a}_{n}}}$=2,能证明${b}_{n+1}≥\frac{2}{\sqrt{2}}=\sqrt{2}$=b2,再用数学归纳法证明bn<$\frac{3}{2}$,n≥2.由此能证明$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).
解答 (Ⅰ)解:∵数列{an}满足a1=a,an+1an-an2=1(n∈N*),
∴a2a-a2=1,解得${a}_{2}=\frac{{a}^{2}+1}{a}$,
∵a3=$\frac{5}{2}$,∴$\frac{5}{2}•\frac{{a}^{2}+1}{a}-(\frac{{a}^{2}+1}{a})^{2}=1$,
解得$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$或$\frac{{a}^{2}+1}{a}$=2,
由$\frac{{a}^{2}+1}{a}$=$\frac{1}{2}$解得a∈∅,由$\frac{{a}^{2}+1}{a}$=2,解得a=1.
∴实数a的值为1.
(Ⅱ)证明:当a=1时,数列{an}满足a1=1,an+1an-an2=1(n∈N*),
∴${a}_{n+1}={a}_{n}+\frac{1}{{a}_{n}}$,
∴${a}_{2}=1+\frac{1}{1}$=2,${a}_{3}=2+\frac{1}{2}=\frac{5}{2}$,${a}_{4}=\frac{5}{2}+\frac{2}{5}$=$\frac{24}{10}$,…
∵bn=$\frac{{a}_{n}}{\sqrt{n}}$(n∈N*),
∴${b}_{n+1}=\frac{{a}_{n+1}}{\sqrt{n+1}}$=$\frac{{a}_{n}+\frac{1}{{a}_{n}}}{\sqrt{n+1}}$,
∵an>0,∴${a}_{n}+\frac{1}{{a}_{n}}$$≥2\sqrt{{a}_{n}•\frac{1}{{a}_{n}}}$=2,当且仅当${a}_{n}=\frac{1}{{a}_{n}}$,即an=1=a1时,取等号,
∴${b}_{n+1}≥\frac{2}{\sqrt{2}}=\sqrt{2}$=b2,
再证bn<$\frac{3}{2}$,n≥2.
(a)n=2时,${b}_{2}=\sqrt{2}$,满足$\sqrt{2}<\frac{3}{2}$.
(b)假设当n=k,(k>2)时有bk<$\frac{3}{2}$,等价于$\frac{{a}_{k}}{\sqrt{k}}<\frac{3}{2}\sqrt{k}$,
∵$\frac{{a}_{k}}{\sqrt{k}}≥\sqrt{2}$,∴$\sqrt{2}k<{a}_{k}<\frac{3\sqrt{k}}{2}$,
当n=k+1时,${b}_{k+1}=\frac{{a}_{k+1}}{\sqrt{k+1}}$<$\frac{f(\frac{3}{2}\sqrt{k})}{\sqrt{k+1}}$=$\frac{\frac{1}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}$,
∴只需证$\frac{\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}$<$\frac{3}{2}$.
证明如下:∵k>2,∴k>$\frac{16}{9}$,
∴9k>16,∴25k>16(k+1),∴5$\sqrt{k}$>4$\sqrt{k+1}$,
∴$\frac{5}{2}\sqrt{k}$>2$\sqrt{k+1}$,∴$\frac{5}{6}\sqrt{k}>\frac{2}{3}\sqrt{k+1}$,
∴$\frac{3}{2}\sqrt{k}>\frac{2}{3}(\sqrt{k+1}+\sqrt{k})$,
∴$\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{1}{\frac{2}{3}(\sqrt{k+1}+\sqrt{k})}$,∴$\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{3}{2}(\sqrt{k+1}-\sqrt{k})$,
∴$\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}<\frac{3}{2}\sqrt{k+1}$,
∴$\frac{\frac{3}{2}\sqrt{k}+\frac{1}{\frac{3}{2}\sqrt{k}}}{\sqrt{k+1}}<\frac{3}{2}$,
∴n=k+1时,${b}_{k+1}<\frac{3}{2}$成立.
综合(a),(b)知bn<$\frac{3}{2}$.
综上所述:$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).
点评 本题考查实数值的求法,考查不等式的证明,综合性强、难度大,解题时要认真审题,注意均值定理、数学归纳法、数列知识的合理运用.
科目:高中数学 来源: 题型:填空题
x | -1 | 0 | 1 | 2 | 3 |
f(x) | -0.6 | 3.1 | 5.4 | 5.9 | 7 |
g(x) | -0.5 | 3.4 | 4.8 | 5.2 | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{43}$ | B. | $\sqrt{43}$ | C. | $\sqrt{11}$ | D. | 2$\sqrt{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {-$\sqrt{2}$-1,$\sqrt{2}$-1} | B. | {-$\sqrt{2}$+1,$\sqrt{2}$+1} | C. | [-2,0] | D. | (0,2]∪{1-$\sqrt{2}$} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com