精英家教网 > 高中数学 > 题目详情

【题目】设关于θ的方程cosθ+sinθ+a=0在区间(0,2π)内有相异的两个实根α、β.

(1)求实数a的取值范围;

(2)求α+β的值.

【答案】见解析

【解析】

(1)原方程可化为sin (θ+)=-,作出函数y=sin (x+)(x∈(0,2π))的图象.

由图知,方程在(0,2π)内有相异实根α,β的充要条件

即-2<a<-或-<a<2.

(2)由图知:当-<a<2,即-时,直线y=-与三角函数y=sin(x+)的图象交于C、D两点,它们中点的横坐标为,所以,所以α+β=.

当-2<a<-,即-时,直线y=-与三角函数y=sin(x+)的图象有两交点A、B,

由对称性知,,所以α+β=

综上所述,α+β=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】不等式-kx+1≤0的解集非空,则k的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=.

(1)若△ABC的面积等于,求a,b;

(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知=(sinxcosx),=(cosφ,sinφ)(|φ|<).函数

fx)=fx)=fx).

(Ⅰ)求fx)的解析式及单调递增区间;

(Ⅱ)将fx)的图象向右平移单位得gx)的图象,若gx)+1≤ax+cosxx∈[0, ]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前3项和为6,前8项和为-4.

(1)求数列{an}的通项公式;

(2)设bn=(4-an)qn-1 (q≠0,n∈N*),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,其中a∈R.

(I)当a=1时,求曲线y=f(x)在原点处的切线方程;

(II)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的最小值;

)设),讨论函数的单调性;

)若斜率为的直线与曲线交于两点,其中,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字

(1)求取出的3张卡片上的数字互不相同的概率;

(2)求随机变量x的分布列;

(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率

查看答案和解析>>

同步练习册答案