精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M (m,0)(m> )作斜率不为0的直线l,交椭圆E于A,B两点,点P( ,0),且 为定值.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求△OAB面积的最大值.

【答案】解:(Ⅰ)设F1(﹣c,0),
∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,
又椭圆E的离心率为 ,得a= ,于是有b2=a2﹣c2=1.
故椭圆Γ的标准方程为:
(Ⅱ)设A(x1 , y1),B(x2 , y2),直线l的方程为:x=ty+m,
整理得(t2+2)y2+2tmy+m2﹣2=0

=
=(t2+1)y1y2+(tm﹣ t)(y1+y2)+m2 =
要使 为定值,则 ,解得m=1或m= (舍)
当m=1时,|AB|= |y1﹣y2|=
点O到直线AB的距离d=
△OAB面积s= =
∴当t=0,△OAB面积的最大值为
【解析】(Ⅰ)由抛物线方程求出抛物线的焦点坐标,即椭圆左焦点坐标,结合椭圆离心率可得长半轴长,再由b2=a2﹣c2求出短半轴,则椭圆E的标准方程可求;(Ⅱ)设A(x1 , y1),B(x2 , y2),直线l的方程为:x=ty+m,由 整理得(t2+2)y2+2tmy+m2﹣2=0由 为定值,解得m,|AB|= |y1﹣y2|= ,点O到直线AB的距离d= ,△OAB面积s= 即可求得最值
【考点精析】利用椭圆的标准方程对题目进行判断即可得到答案,需要熟知椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=AD=CD=1,BD= ,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,则下列结论正确的是(

A.A′C⊥BD
B.∠BA′C=90°
C.CA′与平面A′BD所成的角为30°
D.四面体A′﹣BCD的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区上年度电价为/kWh,年用电量为kWh.本年度计划将电价降低到055/ kWh075/ kWh之间,而用户期望电价为040/ kWh.经测算,下调电价后新增用电量与实际电价与用户的期望电价的差成反比(比例系数为),该地区电力的成本价为030/ kWh

1)写出本年度电价下调后,电力部门的收益与实际电价之间的函数关系式;

2)设=,当电价最低定为多少时仍可保证电力部门的收益比上一年至少增长20%?(注:收益=实际电量×(实际电价-成本价))

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

命题a=0,ab=0”的否命题是a=0,ab≠0”;

已知命题p:x∈R,x2+x+1<0,p:x∈R,x2+x+1≥0;

若命题p”与命题“pq”都是真命题,则命题q一定是真命题;

命题0<a<1,loga(a+1)<lo.

其中正确命题的序号是_____.(把所有正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①命题a=0,ab=0”的否命题是a=0,ab≠0”;

②已知命题p:xR,x2+6x+11<0,p:xR,x2+6x+110;

③若命题p与命题pq都是真命题,则命题q一定是真命题;

④命题0<a<1,loga(a+1)<log

其中正确结论的序号是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.
(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋时期的著名数学家秦九韶在他的著作《数学九章》中提出了秦九韶算法来计算多项式的值,在执行如图算法的程序框图时,若输入的n=5,x=2,则输出V的值为(
A.15
B.31
C.63
D.127

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:

男生

女生

总计

购买数学课外辅导书超过

购买数学课外辅导书不超过

总计

(Ⅰ)根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;

(Ⅱ)从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则下列结论正确的是( )

A.时,函数上有最小值;

B.时,函数上有最小值;

C.对任意的实数,函数的图象关于点对称;

D.方程可能有三个实数根.

查看答案和解析>>

同步练习册答案