分析 先根据椭圆焦点在y轴上得出α的取值范围,再根据长半轴长不小于2得出α的取值范围,即可求出概率..
解答 解:∵焦点在y轴上
∴sinα>cosα,即sinα>sin($\frac{π}{2}$-α)
∵$α∈(0,\frac{π}{2})$,
∴α>$\frac{π}{2}$-α,即$\frac{π}{2}$>α>$\frac{π}{4}$,
长半轴长不小于2,即$\frac{1}{cosα}$≥2,
∴cosα≤$\frac{1}{2}$,
∵$α∈(0,\frac{π}{2})$,
∴$\frac{π}{2}$>α≥$\frac{π}{3}$,
∴所求概率为$\frac{\frac{π}{2}-\frac{π}{3}}{\frac{π}{2}-\frac{π}{4}}$=$\frac{2}{3}$
故答案为:$\frac{2}{3}$.
点评 本题主要考查了椭圆的标准方程的问题,考查概率的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $a>\sqrt{19}或a<-\sqrt{19}或-\sqrt{3}<a<\sqrt{3}$ | B. | $2<a<\frac{8}{3}$ | ||
C. | $-1<a<\frac{8}{3}$ | D. | a∈∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{5}$ | B. | -$\frac{\sqrt{2}}{5}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | -$\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com