精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的图象的相邻两对称中心的距离为π,且f(x+ )=f(﹣x),则函数y=f( ﹣x)是(
A.偶函数且在x=0处取得最大值
B.偶函数且在x=0处取得最小值
C.奇函数且在x=0处取得最大值
D.奇函数且在x=0处取得最小值

【答案】A
【解析】解:∵函数f(x)=Asin(ωx+φ)的图象的相邻两对称中心的距离为π, 即
∴T=2π,于是
∴f(x)=Asin(x+φ);
由f(x+ )=f(﹣x),得:Asin(x+ +φ)=Asin(﹣x+φ),
∴x+ +φ﹣x+φ=π+2kπ,即φ=
取k=0,得φ=
∴f(x)=Asin(x+ ),
则y=f( ﹣x)=Asin( x+ )=Acosx,A>0,
∴函数y=f( ﹣x)是偶函数且在x=0处取得最大值.
故选:A.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC.

(1)求证:平面ABE⊥平面BEF;
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角 ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),设函数f(x)= +1.
(1)若x∈[0, ],f(x)= ,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c﹣ a,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示圆锥的轴截面为等腰直角△SABQ为底面圆周上一点.

(1)QB的中点为COHSC求证OH⊥平面SBQ

(2)如果∠AOQ=60°,QB=2求此圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1n(x﹣1)﹣k(x﹣1)+1
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围;
(3)证明: 且n>1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2016x+log2016 +x)﹣2016x+2,则关于x的不等式f(3x+1)+f(x)>4的解集为(
A.(﹣ ,+∞)
B.(﹣∞,﹣
C.(0,+∞)
D.(﹣∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥的侧面是等腰直角三角形,,且

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,若将f(x)图象上的所有点向右平移 个单位得到函数g(x)的图象,则函数g(x)的单调递增区间为(

A.[kπ﹣ ,kπ+ ],k∈Z
B.[2kπ﹣ ,2kπ+ ],k∈Z
C.[kπ﹣ ,kπ+ ],k∈Z
D.[2kπ﹣ ,2kπ+ ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|,a<0.
(1)证明f(x)+f(﹣ )≥2;
(2)若不等式f(x)+f(2x)< 的解集非空,求a的取值范围.

查看答案和解析>>

同步练习册答案