精英家教网 > 高中数学 > 题目详情

【题目】ABC的三边长是三个连续的自然数,且最大角是最小角的2倍,则此三角形的面积为______

【答案】

【解析】

根据三角形满足的两个条件,设出三边长分别为n-1nn+1,三个角分别为απ-3α,由n-1n+1sinα,以及sin2α,利用正弦定理列出关系式,根据二倍角的正弦函数公式化简后,表示出cosα,然后利用余弦定理得到(n-12=n+12+n2-2n-1ncosα,将表示出的cosα代入,整理后得到关于n的方程,求出方程的解得到n的值,从而得到三边长的值,最后求三角形的面积.

解:设三角形三边是连续的三个自然n-1nn+1,三个角分别为απ-3α

由正弦定理可得:

cosα=

再由余弦定理可得:(n-12=n+12+n2-2n+1ncosα=n+12+n2-2n+1n

化简可得:n2-5n=0,解得:n=5n=0(舍去),

n=5,故三角形的三边长分别为:456.

所以cosα=

所以S=.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列是关于复数的类比推理:

①复数的加减法运算可以类比多项式的加减法运算法则;

②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2

③已知a,b∈R,若a-b>0,则a>b类比得已知z1,z2∈C,若z1-z2>0,则z1>z2

④由向量加法的几何意义可以类比得到复数加法的几何意义.

其中推理结论正确的是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知整数对的序列为 ,( ), ,…,则第70个数对是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数处的切线方程为,求的值;

(Ⅱ)讨论方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于不同的两点.

(1)如果直线过抛物线的焦点,求的值;

(2)如果 ,证明:直线必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.
(1)求证:AB⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数在点(1,0)处的切线方程;

(II)设实数k使得f(x)< kx恒成立,求k的范围;

(III)设函数,求函数h(x)在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在斜三棱柱ABC—A1B1C1中,点D,D1分别为AC,A1C1上的点.

(1)当的值等于何值时,BC1∥平面AB1D1

(2)若平面BC1D∥平面AB1D1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD的边AB=2,BC=1,以A为坐标原点,AB,AD边分别在x轴、y轴的正半轴上,建立直角坐标系。将矩形折叠,使A点落在线段DC上,重新记为点

(1)当点坐标为(1,1)时,求折痕所在直线方程.

(2)若折痕所在直线的斜率为k,试求折痕所在直线的方程;

(3)当时,设折痕所在直线与轴交于点E,与轴交于点F,将沿折痕EF旋转.使二面角的大小为,设三棱锥的外接球表面积为,试求最小值.

查看答案和解析>>

同步练习册答案