已知函数f(x)=lnx-ax2-x,a∈R.
(1)若函数y=f(x)在其定义域内是单调增函数,求a的取值范围;
(2)设函数y=f(x)的图象被点P(2,f(2))分成的两部分为c1,c2(点P除外),该函数图象在点P处的切线为l,且c1,c2分别完全位于直线l的两侧,试求所有满足条件的a的值.
【答案】
分析:(1)函数y=f(x)在其定义域内是单调增函数只需要2ax
2+x-1≤0对任意的x》0恒成立?
成立,利用二次函数的性质可求得a的取值范围;
(2)依题意可求得f(x)在点x=2处的切线l方程,假设满足条件的a存在,令
,对a分类讨论,利用导数工具研究它的性质,利用g′(x)的单调性即可分析判断a是否存在.
解答:解:(1)
,…(2分)
只需要2ax
2+x-1≤0,即
,
所以
.…(4分)
(2)因为
.
所以切线l的方程为
.
令
,则g(2)=0.
.…(6分)
若a=0,则
,
当x∈(0,2)时,g'(x)>0;当x∈(2,+∞)时,g'(x)<0,
所以g(x)≥g(2)=0,c
1,c
2在直线l同侧,不合题意;…(8分)
若a≠0,
,
若
,
,g(x)是单调增函数,
当x∈(2,+∞)时,g(x)>g(2)=0;当x∈(0,2)时,g(x)<g(2)=0,符合题意;…(10分)
若
,当
时,g'(x)<0,g(x)>g(2)=0,
当x∈(2,+∞)时,g'(x)>0,g(x)>g(2)=0,不合题意; …(12分)
若
,当
时,g'(x)<0,g(x)<g(2)=0,
当x∈(0,2)时,g'(x)>0,g(x)<g(2)=0,不合题意; …(14分)
若a>0,当x∈(0,2)时,g'(x)>0,g(x)<g(2)=0,
当x∈(2.+∞)时,g'(x)<0,g(x)<g(2)=0,不合题意.
故只有
符合题意. …(16分)
点评:本题考查利用导数研究函数的单调性,着重考查构造函数的思想,函数与方程,分类讨论与化归思想的综合运用,属于难题.