精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.

【答案】
(1)解:由已知得:﹣cos(A+B)+cosAcosB﹣ sinAcosB=0,

即sinAsinB﹣ sinAcosB=0,

∵sinA≠0,∴sinB﹣ cosB=0,即tanB=

又B为三角形的内角,

则B=


(2)解:∵a+c=1,即c=1﹣a,cosB=

∴由余弦定理得:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣ 2+

∵0<a<1,∴ ≤b2<1,

≤b<1


【解析】(1)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据sinA不为0求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(2)由余弦定理列出关系式,变形后将a+c及cosB的值代入表示出b2 , 根据a的范围,利用二次函数的性质求出b2的范围,即可求出b的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:

编号n

1

2

3

4

5

成绩xn

70

76

72

70

72


(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学为了解本校某年级女生的身高情况,从本校该年级的学生中随机选出100名女生并统计她们的身高(单位 ),得到下面的频数分布表:

1用分层抽样的方法从身高在的女生中共抽取6人,则身高在的女生应抽取几人

21中抽取的6人中,再随机抽取2人,求这2人身高都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)设△AOB的外接圆圆心为E.
(1)若⊙E与直线CD相切,求实数a的值;
(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=(ax2+x﹣1)ex
(1)当a<0时,求f(x)的单调区间;
(2)若a=﹣1,f(x)的图象与g(x)= x3+ x2+m的图象有3个不同的交点,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD

(1)求证:BD⊥PC;
(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为2的正方形, 底面 ,且

(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

(Ⅱ)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线m被两平行线l1:x+y=0与l2:x+y+ =0所截得的线段的长为2 ,则m的倾斜角可以是
①15° ②45° ③60° ④105°⑤120° ⑥165°
其中正确答案的序号是 . (写出所有正确答案的序号)

查看答案和解析>>

同步练习册答案