精英家教网 > 高中数学 > 题目详情

【题目】已知平面向量 满足| |=1,| |=2.
(1)若 的夹角θ=120°,求| + |的值;
(2)若(k + )⊥(k ),求实数k的值.

【答案】
(1)解:| |=1,| |=2,若 的夹角θ=120°,则 =12cos120°=﹣1,

∴| + |= = = =


(2)解:∵(k + )⊥(k ),∴(k + )(k )=k2 =k2﹣4=0,

∴k=±2


【解析】(1)利用两个向量数量积的定义,求得 的值,可得| + |= 的值.(2)利用两个向量垂直的性质,可得(k + )(k )=k2a2 =0,由此求得k的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年某招聘会上,有5个条件很类似的求职者,把他们记为A,B,C,D,E,他们应聘秘书工作,但只有2个秘书职位,因此5人中仅有2人被录用,如果5个人被录用的机会相等,分别计算下列事件的概率:
(1)C得到一个职位
(2)B或E得到一个职位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计数据(xi , yi)(i=1,2,3,4,5)由资料知y对x呈线性相关,并且统计的五组数据得平均值分别为 ,若用五组数据得到的线性回归方程 =bx+a去估计,使用8年的维修费用比使用7年的维修费用多1.1万元,
(1)求回归直线方程;
(2)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N*均有 =an+1成立,求c1+c2+c3+…+c2016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=BC=BB1 , 求异面直线A1B与B1C所成的角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校大一新生中的6名同学打算参加学校组织的“演讲团”、“吉他协会”等五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中没有人参加“演讲团”的不同参加方法数为( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标系与参数方程

在直角坐标系xOy中,曲线M的参数方程为 (α为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为 (t为参数).

(1)求曲线M的普通方程和曲线N的直角坐标方程;

(2)若曲线N与曲线M有公共点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆短轴端点和两个焦点的连线构成正方形,且该正方形的内切圆方程为.

(1)求椭圆的方程;

(2)若抛物线的焦点与椭圆的一个焦点重合,直线与抛物线交于两点,且,求的面积的最大值.

查看答案和解析>>

同步练习册答案