分析 由条件求得求得-m-n<x<n-m,再根据它的解集为(-2,5),可得$\left\{\begin{array}{l}{-n-m=-2}\\{n-m=5}\end{array}\right.$,由此求得m和n的值.
解答 解:不等式|x+m|<n(其中n>0)等价于-n<x+m<n,求得-m-n<x<n-m.
再根据它的解集为(-2,5),可得$\left\{\begin{array}{l}{-n-m=-2}\\{n-m=5}\end{array}\right.$,求得m=-$\frac{3}{2}$,n=$\frac{7}{2}$.
点评 本题主要考查绝对值不等式的解法,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 奇函数但不是偶函数 | B. | 偶函数但不是奇函数 | ||
C. | 既是奇函数又是偶函数 | D. | 既不是奇函数又不是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com