【题目】已知曲线上任意一点满足,直线的方程为,且与曲线交于不同两点,.
(1)求曲线的方程;
(2)设点,直线与的斜率分别为,,且,判断直线是否过定点?若过定点,求该定点的坐标.
科目:高中数学 来源: 题型:
【题目】如图1,在边长为2的菱形中,,将沿对角线折起到的位置,使平面平面,是的中点,⊥平面,且,如图2.
(1)求证:平面;
(2)求平面与平面所成角的余弦值;
(3)在线段上是否存在一点,使得⊥平面?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建极坐标系,直线的极坐标方程为
(Ⅰ)求的极坐标方程;
(Ⅱ)射线与圆C的交点为与直线的交点为,求的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆截直线所得的线段的长度为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,若函数在,()处导数相等,证明:;
(2)是否存在,使直线是曲线的切线,也是曲线的切线,而且这样的直线是唯一的,如果存在,求出直线方程,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆(a>0,b>0)的左右焦点分别为F1,F2,与y轴正半轴交于点B,若△BF1F2为等腰直角三角形,且直线BF1被圆x2+y2=b2所截得的弦长为2,
(1)求椭圆的方程;
(2)直线l:y=kx+m与椭圆交于点A,C,线段AC的中点为M,射线MO与椭圆交于点P,点O为△PAC的重心,求证:△PAC的面积S为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有曲池,上中周二丈,外周四丈,广一丈,下中周一丈四尺,外周二丈四尺,广五尺,深一丈,问积几何?”其意思为:“今有上下底面皆为扇形的水池,上底中周2丈,外周4丈,宽1丈;下底中周1丈4尺,外周长2丈4尺,宽5尺;深1丈.问它的容积是多少?”则该曲池的容积为( )立方尺(1丈=10尺,曲池:上下底面皆为扇形的土池,其容积公式为[(2×上宽+下宽)(2×下宽+上宽)]×深)
A.B.1890C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,一个长轴顶点在直线上,若直线与椭圆交于,两点,为坐标原点,直线的斜率为,直线的斜率为.
(1)求该椭圆的方程.
(2)若,试问的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com