£¨2012•°üͷһģ£©ÏÖÓÐA£¬BÁ½¸öÏîÄ¿£¬Í¶×ÊAÏîÄ¿100ÍòÔª£¬Ò»Äêºó»ñµÃµÄÀûÈóΪËæ»ú±äÁ¿X1£¨ÍòÔª£©£¬¸ù¾ÝÊг¡·ÖÎö£¬X1µÄ·Ö²¼ÁÐΪ£º
X1 12 11.8 11.7
P
1
6
1
2
1
3
Ͷ×ÊBÏîÄ¿100ÍòÔª£¬Ò»Äêºó»ñµÃµÄÀûÈóX2£¨ÍòÔª£©ÓëBÏîÄ¿²úÆ·¼Û¸ñµÄµ÷Õû£¨¼Û¸ñÉϵ÷»òϵ÷£©Óйأ¬ÒÑÖªBÏîÄ¿²úÆ·¼Û¸ñÔÚÒ»ÄêÄÚ½øÐÐ2´Î¶ÀÁ¢µÄµ÷Õû£¬ÇÒÔÚÿ´Îµ÷ÕûÖм۸ñϵ÷µÄ¸ÅÂʶ¼ÊÇp£¨0¡Üp£¼1£©£®
¾­×¨¼Ò²âËãÆÀ¹ÀBÏîÄ¿²úÆ·¼Û¸ñµÄϵ÷ÓëÒ»Äêºó»ñµÃÏàÓ¦ÀûÈóµÄ¹ØϵÈçÏÂ±í£º
BÏîÄ¿²úÆ·¼Û¸ñÒ»ÄêÄÚϵ÷´ÎÊýX£¨´Î£© 0 1 2
Ͷ×Ê100ÍòÔªÒ»Äêºó»ñµÃµÄÀûÈóX2£¨ÍòÔª£© 13 12.5 2
£¨¢ñ£©ÇóX1µÄ·½²îD£¨X1£©£»
£¨¢ò£©ÇóX2µÄ·Ö²¼ÁУ»
£¨¢ó£©Èôp=0.3£¬¸ù¾ÝͶ×Ê»ñµÃÀûÈóµÄ²îÒ죬ÄãÔ¸ÒâÑ¡ÔñͶ×ÊÄĸöÏîÄ¿£¿
£¨²Î¿¼Êý¾Ý£º1.22¡Á0.49+0.72¡Á0.42+9.82¡Á0.09=9.555£©£®
·ÖÎö£º£¨¢ñ£©¸ù¾ÝX1µÄ¸ÅÂÊ·Ö²¼ÁУ¬ÀûÓÃÆÚÍû¡¢·½²î¹«Ê½£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨¢ò£©È·¶¨XµÄÈ¡Öµ£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬¿ÉµÃX2µÄ¸ÅÂÊ·Ö²¼ÁУ»
£¨¢ó£©µ±p=0.3ʱ£¬ÆÚÍûÏàͬ£¬ÀûÓ÷½²îµÄ´óС±È½Ï£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨¢ñ£©X1µÄ¸ÅÂÊ·Ö²¼ÁÐΪ
      X1 12 11.8 11.7
P
1
6
1
2
1
3
ÔòE(X1)=12¡Á
1
6
+11.8¡Á
1
2
+11.7¡Á
1
3
=11.8
.D(X1)=(12-11.8)2¡Á
1
6
+(11.8-11.8)2¡Á
1
2
+(11.7-11.8)2¡Á
1
3
=0.01
£®---------£¨4·Ö£©
£¨¢ò£©ÉèAi±íʾʼþ¡±µÚi´Îµ÷Õû£¬¼Û¸ñϵ÷¡±£¨i=1£¬2£©£¬ÔòP£¨X=0£©=P(
.
A
1
)P(
.
A
2
)=(1-p)2
£»P£¨X=1£©=P(
.
A
1
)P(A2)+P(A1)P(
.
A
2
)=2p(1-p)
£»P£¨X=2£©=P(A1)P(A2)=p2
¹ÊX2µÄ¸ÅÂÊ·Ö²¼ÁÐΪ
X2 13 12.5 2
P £¨1-p£©2 2p£¨1-p£© p2
---------£¨8·Ö£©
£¨¢ó£©µ±p=0.3ʱ£®E£¨X2£©=E£¨X1£©=11.8£¬
ÓÉÓÚD£¨X1£©=0.01£®D£¨X2£©=9.555£®
ËùÒÔD£¨X2£©£¾D£¨X1£©£¬µ±Í¶×ÊÁ½¸öÏîÄ¿µÄÀûÈó¾ùÖµÏàͬµÄÇé¿öÏ£¬Í¶×ÊBÏîÄ¿µÄ·çÏÕ¸ßÓÚAÏîÄ¿£®
´Ó»ñµÃÎȶ¨ÊÕÒ濼ÂÇ£¬µ±p=0.3ʱӦͶ×ÊAÏîÄ¿£®---------£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÆÚÍûÓë·½²î£¬¿¼²éÀûÓøÅÂÊ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬ÕýÈ·ÇóÆÚÍûÓë·½²îÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•°üͷһģ£©ÔÚËÄÀâ׶P-ABCDÖУ¬¡ÏABC=¡ÏACD=90¡ã£¬¡ÏBAC=¡ÏCAD=60¡ã£¬PA¡ÍƽÃæABCD£¬EΪPDµÄÖе㣬PA=2£¬AB=1£®
£¨¢ñ£©ÇóËÄÀâ׶P-ABCDµÄÌå»ýV£»
£¨¢ò£©ÈôFΪPCµÄÖе㣬ÇóÖ¤£ºÆ½ÃæPAC¡ÍƽÃæAEF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•°üͷһģ£©ÏÂÁÐÃüÌâ´íÎóµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•°üͷһģ£©ÒÑ֪˫ÇúÏß
x2
a2
-
y2
b2
=1£¨a£¾0£¬b£¾0£©ÓëÅ×ÎïÏßy2=8xÓРһ¸ö¹«¹²µÄ½¹µãF£¬ÇÒÁ½ÇúÏßµÄÒ»¸ö½»µãΪP£¬Èô|PF|=5£¬ÔòË«ÇúÏß·½³ÌΪ
x2-
y2
3
=1
x2-
y2
3
=1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•°üͷһģ£©º¯Êýf£¨x£©=sin£¨¦Øx+?£©£¨ÆäÖÐ|?|£¼
¦Ð
2
£©µÄͼÏóÈçͼËùʾ£¬ÎªÁ˵õ½y=sin¦ØxµÄͼÏó£¬Ö»Ðè°Ñy=f£¨x£©µÄͼÏóÉÏËùÓе㣨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•°üͷһģ£©ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ 
x=acos¦Õ
y=bsin¦Õ
£¨a£¾b£¾0£¬?Ϊ²ÎÊý£©£¬ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2ÊÇÔ²ÐÄÔÚ¼«ÖáÉÏ£¬ÇÒ¾­¹ý¼«µãµÄÔ²£®ÒÑÖªÇúÏßC1ÉϵĵãM£¨1£¬
3
2
£©¶ÔÓ¦µÄ²ÎÊý¦Õ=
¦Ð
3
£¬ÇúÏßC2¹ýµãD£¨1£¬
¦Ð
3
£©£®
£¨¢ñ£©ÇóÇúÏßC1£¬C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôµãA£¨¦Ñ 1£¬¦È£©£¬B£¨¦Ñ 2£¬¦È+
¦Ð
2
£© ÔÚÇúÏßC1ÉÏ£¬Çó
1
¦Ñ
2
1
+
1
¦Ñ
2
2
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸