精英家教网 > 高中数学 > 题目详情

【题目】为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20)学生的数学期末考试成绩.

甲班

乙班

合计

优秀

不优秀

合计

现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;

(II)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.

下面临界值表供参考:

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2)

【答案】1;(2)列联表见解析,有%的把握认为成绩优秀与教学方式有关.

【解析】

(1)先求得甲班数学成绩不低于80分的同学人数及成绩为87分的同学人数,利用排列组合求得基本事件的个数,根据古典概型的概率公式计算可得结论;(2)根据茎叶图分别求出甲、乙班优秀的人数与不优秀的人数列出列联表利用相关指数公式计算的观测值比较与临界值的大小判断成绩优秀与教学方式有关的可靠程度.

解:(1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3从甲班数学成绩不低于80分的同学中随机抽取两名同学的一切可能结果组成的基本事件有C=10(),“抽到至少有一个87分的同学所组成的基本事件有CC+C=(7),所以P.

(2)2×2列联表如下:

甲班

乙班

合计

优秀

6

14

20

不优秀

14

6

20

合计

20

20

40

K2=6.4>5.024.

因此,我们有97.5%的把握认为成绩优秀与教学方式有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一次数学考试后,对高三文理科学生进行抽样调查,调查其对本次考试的结果满意或不满意,现随机抽取名学生的数据如下表所示:

满意

不满意

总计

文科

22

18

40

理科

48

12

60

总计

70

30

100

1)根据数据,有多大的把握认为对考试的结果满意与科别有关;

2)用分层抽样方法在感觉不满意的学生中随机抽取名,理科生应抽取几人;

3)在(2)抽取的名学生中任取2名,求文科生人数的期望.其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抛物线上的两点,的中点的纵坐标为4,直线的斜率为.

(1)求抛物线的方程;

(2)已知点为抛物线(除原点外)上的不同两点,直线的斜率分别为,且满足,记抛物线处的切线交于点线段的中点为,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的极大值点,求的值;

2)若上只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,其图象关于点对称,且在区间上是单调函数,则的值是( )

A. B. C. D. 无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距与短轴长相等,长轴长为,设过右焦点F倾斜角为的直线交椭圆MAB两点.

(1)求椭圆M的方程;

(2)求证:

(3)设过右焦点F且与直线AB垂直的直线交椭圆MCD,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为0),过点的直线的参数方程为t为参数),直线与曲线C相交于AB两点.

)写出曲线C的直角坐标方程和直线的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每个国家对退休年龄都有不一样的规定,从2018年开始,我国关于延迟退休的话题一直在网上热议,为了了解市民对延迟退休的态度,现从某地市民中随机选取100人进行调查,调查情况如下表:

年龄段(单位:岁)

被调查的人数

赞成的人数

1)从赞成延迟退休的人中任选1人,此人年龄在的概率为,求出表格中的值;

2)若从年龄在的参与调查的市民中按照是否赞成延迟退休进行分层抽样,从中抽取10人参与某项调查,然后再从这10人中随机抽取4人参加座谈会,记这4人中赞成延迟退休的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若对任意的 aR,存在 [0,2] ,使得成立,则实数k的最大值是_____

查看答案和解析>>

同步练习册答案