精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是PA的中点,BD⊥CQ,PA=PC,PB=3,∠ABC=60°.
(1)求证:PC∥平面BDQ; 
(2)求四棱锥P-ABCD的体积.
分析:(1)连接AC交BD于点O,连接QO,利用三角形的中位线定理即可证得PC∥QO,进而证明PC∥平面BQD.
(2)利用已知条件先证明PO⊥底面ABCD,进而可求出体积.
解答:解:(1)如图所示,连接AC交BD于点O,连接QO,PO.
∵底面ABCD是菱形,∴OA=OC,
又∵PQ=QA,∴QO∥PC.
而PC?平面BQD,QO?平面BQD,
∴PC∥平面BQD.
(2)∵底面ABCD是菱形,
∴对角线BD⊥AC,
又已知BD⊥QC,BD∩AC=O,∴BD⊥平面PAC,从而可得BD⊥PO.
∵PB=PC,OA=OC,∴PO⊥AC.
而BD∩AC=O,∴PO⊥底面ABCD.
∵底面ABCD是边长为2的菱形,∠ABC=60°,∴△ABC是正三角形,∴BO=
3

在Rt△POB中,PO=
PB2-BO2
=
32-(
3
)2
=
6

可求S菱形ABCD=22×sin60°=2
3

∴V四棱锥P-ABCD=
1
3
×2
3
×
6
=2
2
点评:本题考查了线面平行和线面垂直及体积,充分理解和运用其判定定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大小;
(Ⅲ)求点B到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是一个矩形,AB=3.AD=1.又PA⊥AB,PA=4,
∠PAD=60°.求:
(1)四棱锥P-ABCD的体积.
(2)二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求线段PD的长;
(2)若PC=
11
R
,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)如图所示,四棱锥P-ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点.
求证:
(1)BC∥平面EFG;
(2)平面EFG⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=AD=AB=1.
(1)证明:EB∥平面PAD;
(2)证明:BE⊥平面PDC;
(3)求三棱锥B-PDC的体积V.

查看答案和解析>>

同步练习册答案