【题目】已知抛物线C:y2=2px(p>0)上的点A(4,t)到其焦点F的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点F作直线l,使得抛物线C上恰有三个点到直线1的距离为2,求直线1的方程.
【答案】(I);(II).
【解析】
(Ⅰ)由已知列式求出p的值,则抛物线的方程可求;
(Ⅱ)由题意可知,当直线l的斜率不存在时,C上仅有两个点到l的距离为2,不合题意;当直线l的斜率存在时,设直线l的方程为y=k(x﹣1),要满足题意,需使在含坐标原点的弧上有且只有一个点P到直线l的距离为2,且过点P的直线l平行y=k(x﹣1)且与抛物线C相切.设切线方程为y=kx+m,与抛物线方程联立,利用判别式为0可得m与k的关系,再由F到直线y=k(x﹣1)的距离为2求得k值,则直线l的方程可求.
(Ⅰ)由抛物线的定义可知|AF|=d=45,
解得:p=2,
故抛物线的方程是:y2=4x;
(Ⅱ)由题意可知,当直线l的斜率不存在时,C上仅有两个点到l的距离为2,不合题意;
当直线l的斜率存在时,设直线l的方程为y=k(x﹣1),
要满足题意,需使在含坐标原点的弧上有且只有一个点P到直线l的距离为2,
且过点P的直线l平行y=k(x﹣1)且与抛物线C相切.
设切线方程为y=kx+m,
代入y2=4x,可得k2x2+(2km﹣4)x+m2=0.
由△=(2km﹣4)2﹣4k2m2=0,得km=1.
由,整理得:3k2﹣2km﹣m2+4=0.
即,解得,即k.
因此,直线方程为y.
科目:高中数学 来源: 题型:
【题目】将参加冬季越野跑的600名选手编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,把编号分50组后,在第一组的001到012这12个编号中随机抽得的号码为004.这600名选手分穿着三种颜色的衣服,从001到301穿红色衣服,从302到496穿白色衣服,从497到600穿黄色衣服.则抽到穿白色衣服的选手人数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,四边形ACC1A1和BCC1B1均为正方形,且所在平面互相垂直.
(Ⅰ)求证:BC1⊥AB1;
(Ⅱ)求直线BC1与平面AB1C1所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以坐标原点为圆心且与直线mx﹣y﹣2m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为( )
A.x2+y2=5
B.x2+y2=3
C.x2+y2=9
D.x2+y2=7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ax有极值1,这里e是自然对数的底数.
(1)求实数a的值,并确定1是极大值还是极小值;
(2)若当x∈[0,+∞)时,f(x)≥mxln(x+1)+1恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C1: =1和C2:x2+ =1.P为C1上的动点,Q为C2上的动点,w是 的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且 =w},则Ω中元素个数为( )
A.2个
B.4个
C.8个
D.无穷个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com