精英家教网 > 高中数学 > 题目详情
8.设P是双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$上的动点,若P到两条渐近线的距离分别为d1,d2,则d1•d2=$\frac{4}{3}$.

分析 先确定两条渐近线方程,设双曲线C上的点P(x,y),求出点P到两条渐近线的距离,结合P在双曲线C上,即可求d1•d2的值.

解答 解:由条件可知:两条渐近线分别为x±$\sqrt{2}$y=0
设双曲线C上的点P(x,y),
则点P到两条渐近线的距离分别为d1=$\frac{|x+\sqrt{2}y|}{\sqrt{3}}$,d2=$\frac{|x-\sqrt{2}y|}{\sqrt{3}}$
所以d1•d2=$\frac{|x+\sqrt{2}y|}{\sqrt{3}}$•$\frac{|x-\sqrt{2}y|}{\sqrt{3}}$=$\frac{{|x}^{2}-2{y}^{2}|}{3}$=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查双曲线的标准方程,考查双曲线的几何性质,求出点P到两条渐近线的距离是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.不等式x(|x|-1)<0的解集是(  )
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若二次函数f(x)满足f(1)=f(3)=3,且它的图象与x轴相交于A,B两点,且|AB|=4.
(1)求f(x)的解析式;
(2)若f(x)在区间[m,4]上的值域为[-5,4],求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在三棱锥P-ABC中,底面△ABC为正三角形,且PA=PB=PC,G为△PAC的重心,过G作三棱锥的一个截面,使截面平行于直线AC与PB,若截面是边长为2的正方形,则三棱锥的体积为(  )
A.$\frac{3\sqrt{3}}{3}$B.$\frac{9\sqrt{11}}{4}$C.$\frac{16\sqrt{2}}{3}$D.18$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=cos(ωx+$\frac{π}{3}$)+$\sqrt{3}$sinωx+1(ω>0),相邻两对称轴距离为$\frac{π}{2}$.
(I)求ω的值和最小正周期;
(Ⅱ)求f(x)在区间(-$\frac{π}{12}$,$\frac{π}{2}$)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设P为直线3x+4y+3=0上的动点,过点P做圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,当四边形PACB的面积最小时,∠APB=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下列式子:13=(1×1)2,13+23+33=(2×3)2,l3+23+33+43+53=(3×5)2,l3+23+33+43+53+63+73=(4×7)2,…由归纳思想,第n个式子为l3+23+33+…+(2n-1)3=[n(2n-1)]2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.己知某种输入输出映射关系如图:定义该输出输出的映射关系为f,则f(|)=(  )
A.-B./C.|D.\

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在(x-$\frac{1}{x}$)8的展开式中,$\frac{1}{{x}^{2}}$的系数为-56.

查看答案和解析>>

同步练习册答案