(本题满分16分)
设函数其中实数.
(1)当时,求函数的单调区间;
(2)当函数与的图象只有一个公共点且存在最小值时,
记的最小值为,求函数的值域;
(3)若函数与在区间内均为增函数,求实数的取值范围.
(1)的单调增区间为
单调减区间为
(2)
(3)
【解析】解:(1) 当时,=
=…………………………2分
由>0得或 由<0,得
∴的单调增区间为
单调减区间为……………………………………5分
(2)由题意知 ,
即恰有一根(含重根).
∴ ≤,即≤≤,又,∴ .
当时,才存在最小值, ………………………8分
,
∴ . ∴的值域为 …………10分
(3)当时,,
∴ 当时,;当时,,
在和内是增函数,在内是增函数.
由题意得,解得≥ ……………………………………13分
当时,在和内是增函数,在内是增函数.
由题意得,解得≤ ……………………………………15分
综上可知,实数的取值范围为 ………………………16分
科目:高中数学 来源: 题型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
已知函数(,、是常数,且),对定义域内任意(、且),恒有成立.
(1)求函数的解析式,并写出函数的定义域;
(2)求的取值范围,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)已知数列的前项和为,且.数列中,,
.(1)求数列的通项公式;(2)若存在常数使数列是等比数列,求数列的通项公式;(3)求证:①;②.
查看答案和解析>>
科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)
已知函数
(1)判断并证明在上的单调性;
(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;
(3)若在上恒成立 , 求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com