精英家教网 > 高中数学 > 题目详情
已知F1,F2是椭圆  (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于   
-1  

试题分析:根据题意,由于F1,F2是椭圆  (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。
点评:主要是考查了椭圆的方程与性质的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称
点为(不重合) 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是的角平分线, 证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在等腰直角中,,点在线段上.

(Ⅰ) 若,求的长;
(Ⅱ)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线交椭圆两点,椭圆与轴的正半轴交于点,若的重心恰好落在椭圆的右焦点上,则直线的方程是(      )
A. B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线上的一动点到直线距离的最小值是   (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1.
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=
(3)记
(A、B、是(2)中的点),,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的虚轴长是实轴长的2倍,则m等于             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的一个焦点与抛物线的焦点重合,则此双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案