精英家教网 > 高中数学 > 题目详情
15.奇函数f(x)(x∈R)满足f(-4)=f(1)=0,且在区间(0,2]与[2,+∞)上分别是增函数和减函数,则满足x3•f(x)>0的x的取值范围是(  )
A.(-4,-1)∪(1,4)B.(-∞,4)∪(-1,0)C.(-∞,-4)∪(4,+∞)D.(-∞,-4)∪(-1,0)∪(1,4)

分析 奇函数f(x)(x∈R)满足f(-4)=f(1)=0,可得f(4)=f(-1)=f(0)=0.由题意可得如图所示,解出即可得出.

解答 解:∵奇函数f(x)(x∈R)满足f(-4)=f(1)=0,
∴f(4)=f(-1)=f(0)=0.
由题意可得如图所示,
满足x3•f(x)>0的x的取值范围是:1<x<4,或-4<x<-1.
故选:A.

点评 本题考查了本题考查了函数的奇偶性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的两个焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,直线$y=\sqrt{2}$过椭圆的焦点,点P是椭圆上位于第一象限的点,并满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$,过P作倾斜角互补的两条直线PA,PB分别交椭圆于A,B两点.
(1)求椭圆方程和点P坐标;
(2)求证直线AB的倾斜角为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.二次函数f(x)=x2-2x+2在[-2,2]的值域为(  )
A.[1,2]B.[2,8]C.[2,10]D.[1,10]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线l过椭圆$\frac{{x}^{2}}{2}+{y}^{2}=1$上任意一点A(x1,y1)(y1≠0)且斜率为-$\frac{{x}_{1}}{2{y}_{1}}$,设原点到直线l的距离为d,点A到椭圆两个焦点的距离分别为r1、r2,则$\sqrt{{r}_{1}•{r}_{2}}•d$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{x-4}&{(x≥6)}\\{f(x+3)}&{(x<6)}\end{array}\right.$,则f(1)为(  )
A.3B.B、4C.C5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算
(1)lg25-lg5•lg20+2lg2-(lg2)2
(2)($\frac{27}{8}$)${\;}^{\frac{2}{3}}$+log16(-2)2-($\frac{2}{3}$)-2-($\sqrt{3}$+1)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式lg(x2-3x)<1的解集为(  )
A.(-2,5)B.(-5,2)C.(3,5)D.(-2,0)∪(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=ax(a>0,a≠1)在区间[1,2]上的最大值是最小值的2倍,则a的值是(  )
A.$\frac{1}{2}$或$\sqrt{2}$B.$\frac{1}{2}$或2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合$A=\{x|\frac{x+2}{4-x}>0\},B=\{x|{x^2}-3ax+2{a^2}<0\}$.
(1)若B⊆A,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案